搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机器件电流自旋极化放大性质研究

窦兆涛 任俊峰 王玉梅 原晓波 胡贵超

有机器件电流自旋极化放大性质研究

窦兆涛, 任俊峰, 王玉梅, 原晓波, 胡贵超
PDF
导出引用
导出核心图
  • 基于自旋扩散漂移方程,考虑到电场的影响及有机半导体中特殊的载流子电荷自旋关系, 对一个简单的T型结构有机自旋器件模型进行了理论研究,得出了此有机器件的电流自旋极化放大率表达式.研究表明,器件中极化子比率、电场和电流密度都会影响器件的电流自旋极化放大率,通过调节此有机器件的电场和极化子比率可以获得较大的电流自旋极化放大率.
    • 基金项目: 国家自然科学基金 (批准号: 10904083, 10904084)、山东省优秀中青年科学家科研奖励基金(批准号: BS2009CL008) 和山东省高等学校科技奖励计划(批准号: J09LA03)资助的课题.
    [1]

    Baibich M N, Broto J M, Fert A, Nguyen F D V, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [2]
    [3]

    Barnas J, Fuss A, Camley R E, Grnberg P, Zinn W 1990 Phys. Rev. B 42 8110

    [4]
    [5]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnr S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [6]
    [7]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Brdas J L, Lgdlund M, Salaneck W R 1999 Nature 397 121

    [8]
    [9]

    Forrest S, Burrows P, Thompson M 2000 IEEE Spectr. 37 29

    [10]
    [11]
    [12]

    Chen H M, Jin B S 2010 Micronanoelectron. Technol. 47 470 (in Chinese) [陈海明, 靳宝善 2010 微纳电子技术 47 470]

    [13]

    Wang L X, Zhang D C, Liu D S, Han S H, Xie S J 2003 Acta Phys. Sin. 52 2547 (in Chinese) [王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰 2003 物理学报 52 2547]

    [14]
    [15]

    Wang L X, Liu D S, Xie S J 2002 Acta Phys. Sin. 51 362 (in Chinese) [王鹿霞, 刘德胜, 解士杰 2002 物理学报 51 362]

    [16]
    [17]

    Fu J Y, Ren J F, Liu D S, Xie S J 2004 Acta Phys. Sin. 53 1989 (in Chinese) [付吉永, 任俊峰, 刘德胜, 解士杰 2004 物理学报 53 1989]

    [18]
    [19]

    Naber W J M, Faez S, Gvander Wie W 2007 J. Phys. D 40 R205

    [20]
    [21]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181

    [22]
    [23]
    [24]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [25]

    Majumdar S, Laiho R, Laukkanen P, Vyrynen I J, Majumdar H S, sterbacka R 2006 Appl. Phys. Lett. 89 122114

    [26]
    [27]
    [28]

    Drew A J, Hoppler J, Schulz L, Pratt F L, Desai P, Shakya P, Kreouzis T, Gillin W P, Suter A, Morley N A, Malik V K, Dubroka A, Kim K W, Bouyanfif H, Bourqui F, Bernhard C, Scheuemann R, Nieuwenhuys G J, Prokscha T, Morenzoni E 2009 Nature 8 109

    [29]
    [30]

    Li C H, van 't Erve O M J, Jonker B T 2011 Nat. Commun. 2 245

    [31]
    [32]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [33]

    Fu J Y, Ren J F, Liu X J, Xie S J 2006 Phys. Rev. B 73 195401

    [34]
    [35]

    Ruden P P, Smith D L 2004 J. Appl. Phys. 95 4898

    [36]
    [37]

    Yu Z G, Berding M A, Krishnamurthy S 2005 J. Appl. Phys. 97 024510

    [38]
    [39]

    Yu Z G, Berding M A, Krishnamurthy S 2005 Phys. Rev. B 71 060408

    [40]
    [41]

    Yunus M, Ruden P P, Smith D L 2008 J. Appl. Phys. 103 103714

    [42]
    [43]
    [44]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Appl. Phys. 98 074503

    [45]
    [46]

    Mi Y L, Zhang M, Yan H 2008 Phys. Lett. A 372 6434

    [47]
    [48]

    Jung S W, Lee H W 2006 Phys. Rev. B 73 165302

    [49]

    Yu Z G, Flatt M E 2002 Phys. Rev. B 66 201202(R)

    [50]
    [51]

    Yu Z G, Flatt M E 2002 Phys. Rev. B 66 235302

    [52]
    [53]
    [54]

    Aronov A G, Pikus G E 1976 Fiz. Tekh. Poluprovodn. 10 1177

    [55]

    Ren J F, Zhang Y B, Xie S J 2008 Org. Electron. 9 1017

    [56]
    [57]

    Xiu M X, Ren J F, Wang Y M 2010 J. At. Mol. Phys. 27 353

  • [1]

    Baibich M N, Broto J M, Fert A, Nguyen F D V, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [2]
    [3]

    Barnas J, Fuss A, Camley R E, Grnberg P, Zinn W 1990 Phys. Rev. B 42 8110

    [4]
    [5]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnr S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [6]
    [7]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Brdas J L, Lgdlund M, Salaneck W R 1999 Nature 397 121

    [8]
    [9]

    Forrest S, Burrows P, Thompson M 2000 IEEE Spectr. 37 29

    [10]
    [11]
    [12]

    Chen H M, Jin B S 2010 Micronanoelectron. Technol. 47 470 (in Chinese) [陈海明, 靳宝善 2010 微纳电子技术 47 470]

    [13]

    Wang L X, Zhang D C, Liu D S, Han S H, Xie S J 2003 Acta Phys. Sin. 52 2547 (in Chinese) [王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰 2003 物理学报 52 2547]

    [14]
    [15]

    Wang L X, Liu D S, Xie S J 2002 Acta Phys. Sin. 51 362 (in Chinese) [王鹿霞, 刘德胜, 解士杰 2002 物理学报 51 362]

    [16]
    [17]

    Fu J Y, Ren J F, Liu D S, Xie S J 2004 Acta Phys. Sin. 53 1989 (in Chinese) [付吉永, 任俊峰, 刘德胜, 解士杰 2004 物理学报 53 1989]

    [18]
    [19]

    Naber W J M, Faez S, Gvander Wie W 2007 J. Phys. D 40 R205

    [20]
    [21]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181

    [22]
    [23]
    [24]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [25]

    Majumdar S, Laiho R, Laukkanen P, Vyrynen I J, Majumdar H S, sterbacka R 2006 Appl. Phys. Lett. 89 122114

    [26]
    [27]
    [28]

    Drew A J, Hoppler J, Schulz L, Pratt F L, Desai P, Shakya P, Kreouzis T, Gillin W P, Suter A, Morley N A, Malik V K, Dubroka A, Kim K W, Bouyanfif H, Bourqui F, Bernhard C, Scheuemann R, Nieuwenhuys G J, Prokscha T, Morenzoni E 2009 Nature 8 109

    [29]
    [30]

    Li C H, van 't Erve O M J, Jonker B T 2011 Nat. Commun. 2 245

    [31]
    [32]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [33]

    Fu J Y, Ren J F, Liu X J, Xie S J 2006 Phys. Rev. B 73 195401

    [34]
    [35]

    Ruden P P, Smith D L 2004 J. Appl. Phys. 95 4898

    [36]
    [37]

    Yu Z G, Berding M A, Krishnamurthy S 2005 J. Appl. Phys. 97 024510

    [38]
    [39]

    Yu Z G, Berding M A, Krishnamurthy S 2005 Phys. Rev. B 71 060408

    [40]
    [41]

    Yunus M, Ruden P P, Smith D L 2008 J. Appl. Phys. 103 103714

    [42]
    [43]
    [44]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Appl. Phys. 98 074503

    [45]
    [46]

    Mi Y L, Zhang M, Yan H 2008 Phys. Lett. A 372 6434

    [47]
    [48]

    Jung S W, Lee H W 2006 Phys. Rev. B 73 165302

    [49]

    Yu Z G, Flatt M E 2002 Phys. Rev. B 66 201202(R)

    [50]
    [51]

    Yu Z G, Flatt M E 2002 Phys. Rev. B 66 235302

    [52]
    [53]
    [54]

    Aronov A G, Pikus G E 1976 Fiz. Tekh. Poluprovodn. 10 1177

    [55]

    Ren J F, Zhang Y B, Xie S J 2008 Org. Electron. 9 1017

    [56]
    [57]

    Xiu M X, Ren J F, Wang Y M 2010 J. At. Mol. Phys. 27 353

  • [1] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [2] 姜丽娜, 张玉滨, 董顺乐. 有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响. 物理学报, 2015, 64(14): 147104. doi: 10.7498/aps.64.147104
    [3] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响. 物理学报, 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [4] 张玉滨, 解士杰, 任俊峰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [5] 王志明. GaAs自旋注入及巨霍尔效应的研究. 物理学报, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [6] 任俊峰, 王玉梅, 原晓波, 胡贵超. 有机自旋阀的磁电阻性质研究. 物理学报, 2010, 59(9): 6580-6584. doi: 10.7498/aps.59.6580
    [7] 秦伟, 张玉滨, 解士杰. 有机Co/Alq3/La1-xSrxMnO3(LSMO)器件磁电阻的温度效应研究. 物理学报, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [8] 修明霞, 任俊峰, 王玉梅, 原晓波, 胡贵超. 肖特基势垒对铁磁/有机半导体结构自旋注入性质的影响. 物理学报, 2010, 59(12): 8856-8861. doi: 10.7498/aps.59.8856
    [9] 李统藏, 刘之景, 王克逸. 自旋极化电子从铁磁金属注入半导体时自旋极化的计算. 物理学报, 2003, 52(11): 2912-2917. doi: 10.7498/aps.52.2912
    [10] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究. 物理学报, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [11] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [12] 赵俊卿, 魏建华, 王守国, 解士杰, 梅良模. 非闭环结构下有机磁性材料中的自旋密度波性质. 物理学报, 1999, 48(6): 1163-1169. doi: 10.7498/aps.48.1163
    [13] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量. 物理学报, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [14] 王炜路, 李 宏, 公丕锋. 单量子阱的自旋电流. 物理学报, 2007, 56(4): 2405-2408. doi: 10.7498/aps.56.2405
    [15] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究. 物理学报, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [16] 陆怀先, 都有为, 王挺祥, 张毓昌. 有机物包裹的Fe3O4颗粒表面自旋钉扎效应研究. 物理学报, 1985, 34(1): 121-125. doi: 10.7498/aps.34.121
    [17] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响. 物理学报, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [18] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响. 物理学报, 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [19] 郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东. 应力调制的自旋转矩临界电流. 物理学报, 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [20] 李家明, 侯氢. 自旋极化电子与Xe原子的弹性碰撞. 物理学报, 1992, 41(9): 1424-1430. doi: 10.7498/aps.41.1424
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2136
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-10
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

有机器件电流自旋极化放大性质研究

  • 1. 山东师范大学物理与电子科学学院, 济南 250014
    基金项目: 

    国家自然科学基金 (批准号: 10904083, 10904084)、山东省优秀中青年科学家科研奖励基金(批准号: BS2009CL008) 和山东省高等学校科技奖励计划(批准号: J09LA03)资助的课题.

摘要: 基于自旋扩散漂移方程,考虑到电场的影响及有机半导体中特殊的载流子电荷自旋关系, 对一个简单的T型结构有机自旋器件模型进行了理论研究,得出了此有机器件的电流自旋极化放大率表达式.研究表明,器件中极化子比率、电场和电流密度都会影响器件的电流自旋极化放大率,通过调节此有机器件的电场和极化子比率可以获得较大的电流自旋极化放大率.

English Abstract

参考文献 (57)

目录

    /

    返回文章
    返回