搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究

朱丽丹 孙方远 祝捷 唐大伟

飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究

朱丽丹, 孙方远, 祝捷, 唐大伟
PDF
导出引用
导出核心图
  • 随着微电子器件尺寸的减小、 工作频率的提高, 金属薄膜中电子与声子将处于非平衡状态, 这将导致微电子器件的热阻增大. 为准确地对这些微电子器件进行热管理, 电子-声子耦合系数的测量变得越来越重要. 本文采用飞秒激光抽运-探测热 反射法研究了不同厚度的金属纳米薄膜的非平衡传热过程. 通过抛物两步模型对实验数据进行拟合, 在拟合过程中引入电子温度与声子温度对反射率影响的比例关系, 从而优化了拟合结果. 通过对不同厚度的Ni膜与Al膜的电子-声子耦合系数的研究, 表明金属薄膜中的电子-声子耦合系数并不随薄膜厚度的改变发生变化. 实验结果还验证了探测光的反射率同时受到电子温度和声子温度的影响, 并通过数据分析量化了电子温度和声子温度对反射率的影响系数.
    • 基金项目: 国家重大科学研究计划项目(批准号: 2012CB933200)和国家自然科学基金(批准号: 50876103) 资助的课题.
    [1]

    Smith A N, Calame J P 2004 Int. J. Thermophysics 25 409

    [2]

    Chen J K, Latham W P, Beraun J E 2005 J. Laser Appl. 17 63

    [3]
    [4]
    [5]

    Miura K, Qiu J R, Inouye H 1997 Appl. Phys. Lett. 77 3329

    [6]

    Kaganov M I, Lifshitz I M, Tanatarov L V 1957 Sov. Phys. JETP 4 173

    [7]
    [8]
    [9]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 Sov. Phys. JETP 39 375

    [10]

    Paddock C A, Eeslay G L 1986 J. Appl. Phys. 60 285

    [11]
    [12]

    Qiu T Q, Tian C L 1993 J. Heat Transf. Trans. ASME 115 835

    [13]
    [14]
    [15]

    Hostetler J L, Smith A N, Czajkowsky D M, Norris P M 1999 Appl. Optics 38 3614

    [16]

    Hopkins P E, klopf J M, Norris P M 2007 Appl. Optics 46 2076

    [17]
    [18]
    [19]

    Hang P, Tang D W, Chen G H, Zhu J, Zhao W 2008 J. Eng. Thermophys. 29 297 (in Chinese) [韩鹏, 唐大伟, 程光华, 祝捷, 赵卫 2008 工程热物理学报 29 297]

    [20]
    [21]

    Zhu J, Tang D W, Chen G H, Hang P, Zhao W, Zhang X 2008 J. Eng. Thermophys. 29 1227 (in Chinese) [祝捷, 唐大伟, 程光华, 韩鹏, 赵卫, 张兴 2008 工程热物理学报 29 1227]

    [22]

    Wang H D, Ma W G, Zhang X, Wang W 2010 Acta Phys. Sin. 59 3856 (in Chinese) [王海东, 马维刚, 张兴, 王玮 2010 物理学报 59 3856]

    [23]
    [24]

    Ma W G, Wang H D, Zhang X, Wang W 2011 Acta Phys. Sin. 60 064401 (in Chinese) [马维刚, 王海东, 张兴, 王玮 2011 物理学报 60 064401]

    [25]
    [26]

    Hartland G V 2004 Int. J. Nanotechnol. 1 307

    [27]
    [28]

    Orlande H R B, Ozisik M N, Tzou D Y 1995 J. Appl. Phys. 78 1843

    [29]
    [30]
    [31]

    Hohlfeld J, Wellershoff S S, Gdde J, Conrad U, Jhnke V, Matthias E 2000 Chem. Phys. 251 237

    [32]
    [33]

    Hopkins P E, Kassebaum J L, Norris P M 2009 J. Appl. Phys. 105 023710

    [34]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789

    [35]
    [36]
    [37]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2799

    [38]

    Park W J, Jenkins R J, Butler C P, Abbott G L 1961 J. Appl. Phys. 32 1679

    [39]
    [40]
    [41]

    Cahill D G, 1990 Rev. Sci. Instrum. 61 802

    [42]
    [43]

    Qiu T Q, Tien C L 1993 J. Heat Ttransf. 11 5842

    [44]
    [45]

    Rosei R, Lynch D W 1972 Phys. Rev. B 5 3883

    [46]
    [47]

    Brorson S D, Kazeroonian A, Moodera J S, Face D W, Cheng T K, Ippen E P, Dresselhaus M S, Dresselhaus G 1990 Phys. Rev. Lett. 64 2171

    [48]

    Hostetler J L 2001 Ph.D Dissertation (Virginia: University of Virginia)

    [49]
    [50]

    Hostetler J L, Smith A N, Norris P M 1997 Microsc Thermophys. Eng. 9 237

    [51]
    [52]

    Zhu J 2011 Ph.D. Dissertation (Beijing: Graduate School of the Chinese Academy of Sciences) (in Chinese) [祝捷 2011 博士学位论文 (北京: 中国科学院研究生院)]

    [53]
    [54]

    Hanus J, Feinleib J, Scouler W J 1967 Phys. Rev. Lett. 19 16

    [55]
  • [1]

    Smith A N, Calame J P 2004 Int. J. Thermophysics 25 409

    [2]

    Chen J K, Latham W P, Beraun J E 2005 J. Laser Appl. 17 63

    [3]
    [4]
    [5]

    Miura K, Qiu J R, Inouye H 1997 Appl. Phys. Lett. 77 3329

    [6]

    Kaganov M I, Lifshitz I M, Tanatarov L V 1957 Sov. Phys. JETP 4 173

    [7]
    [8]
    [9]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 Sov. Phys. JETP 39 375

    [10]

    Paddock C A, Eeslay G L 1986 J. Appl. Phys. 60 285

    [11]
    [12]

    Qiu T Q, Tian C L 1993 J. Heat Transf. Trans. ASME 115 835

    [13]
    [14]
    [15]

    Hostetler J L, Smith A N, Czajkowsky D M, Norris P M 1999 Appl. Optics 38 3614

    [16]

    Hopkins P E, klopf J M, Norris P M 2007 Appl. Optics 46 2076

    [17]
    [18]
    [19]

    Hang P, Tang D W, Chen G H, Zhu J, Zhao W 2008 J. Eng. Thermophys. 29 297 (in Chinese) [韩鹏, 唐大伟, 程光华, 祝捷, 赵卫 2008 工程热物理学报 29 297]

    [20]
    [21]

    Zhu J, Tang D W, Chen G H, Hang P, Zhao W, Zhang X 2008 J. Eng. Thermophys. 29 1227 (in Chinese) [祝捷, 唐大伟, 程光华, 韩鹏, 赵卫, 张兴 2008 工程热物理学报 29 1227]

    [22]

    Wang H D, Ma W G, Zhang X, Wang W 2010 Acta Phys. Sin. 59 3856 (in Chinese) [王海东, 马维刚, 张兴, 王玮 2010 物理学报 59 3856]

    [23]
    [24]

    Ma W G, Wang H D, Zhang X, Wang W 2011 Acta Phys. Sin. 60 064401 (in Chinese) [马维刚, 王海东, 张兴, 王玮 2011 物理学报 60 064401]

    [25]
    [26]

    Hartland G V 2004 Int. J. Nanotechnol. 1 307

    [27]
    [28]

    Orlande H R B, Ozisik M N, Tzou D Y 1995 J. Appl. Phys. 78 1843

    [29]
    [30]
    [31]

    Hohlfeld J, Wellershoff S S, Gdde J, Conrad U, Jhnke V, Matthias E 2000 Chem. Phys. 251 237

    [32]
    [33]

    Hopkins P E, Kassebaum J L, Norris P M 2009 J. Appl. Phys. 105 023710

    [34]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789

    [35]
    [36]
    [37]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2799

    [38]

    Park W J, Jenkins R J, Butler C P, Abbott G L 1961 J. Appl. Phys. 32 1679

    [39]
    [40]
    [41]

    Cahill D G, 1990 Rev. Sci. Instrum. 61 802

    [42]
    [43]

    Qiu T Q, Tien C L 1993 J. Heat Ttransf. 11 5842

    [44]
    [45]

    Rosei R, Lynch D W 1972 Phys. Rev. B 5 3883

    [46]
    [47]

    Brorson S D, Kazeroonian A, Moodera J S, Face D W, Cheng T K, Ippen E P, Dresselhaus M S, Dresselhaus G 1990 Phys. Rev. Lett. 64 2171

    [48]

    Hostetler J L 2001 Ph.D Dissertation (Virginia: University of Virginia)

    [49]
    [50]

    Hostetler J L, Smith A N, Norris P M 1997 Microsc Thermophys. Eng. 9 237

    [51]
    [52]

    Zhu J 2011 Ph.D. Dissertation (Beijing: Graduate School of the Chinese Academy of Sciences) (in Chinese) [祝捷 2011 博士学位论文 (北京: 中国科学院研究生院)]

    [53]
    [54]

    Hanus J, Feinleib J, Scouler W J 1967 Phys. Rev. Lett. 19 16

    [55]
  • [1] 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰, 蔡达锋. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较. 物理学报, 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [2] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [3] 王玮, 马维刚, 王海东, 张兴. 飞秒脉冲激光加热金属薄膜的理论和实验研究. 物理学报, 2011, 60(6): 064401. doi: 10.7498/aps.60.064401
    [4] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [5] 焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全. 用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强. 物理学报, 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [6] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [7] 熊平新, 贾鑫, 贾天卿, 邓莉, 冯东海, 孙真荣, 徐至展. 三光束飞秒激光干涉在GaP,ZnSe表面诱导二维复合纳米-微米周期结构. 物理学报, 2010, 59(1): 311-316. doi: 10.7498/aps.59.311
    [8] 彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展. 物理学报, 2013, 62(9): 094201. doi: 10.7498/aps.62.094201
    [9] 杨向东, 谷渝秋, 郑志坚, 周维民, 温天舒, 淳于书泰, 焦春晔, 陈 豪, 蔡达锋. 飞秒激光-固体靶相互作用中超热电子能量分布的实验研究. 物理学报, 2005, 54(1): 186-191. doi: 10.7498/aps.54.186
    [10] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [11] 张晓青, 贺号, 胡明列, 颜鑫, 张霞, 任晓敏, 王清月. 多波长飞秒激光激发下GaAs纳米线SHG特性研究. 物理学报, 2013, 62(7): 076102. doi: 10.7498/aps.62.076102
    [12] 赵红敏, 王鹿霞. 异质结中桥分子电子转移的飞秒激光控制研究. 物理学报, 2009, 58(2): 1332-1337. doi: 10.7498/aps.58.1332
    [13] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [14] 卞华栋, 戴晔, 叶俊毅, 宋娟, 阎晓娜, 马国宏. 紧聚焦飞秒脉冲与石英玻璃相互作用过程中的电子动量弛豫时间研究. 物理学报, 2014, 63(7): 074209. doi: 10.7498/aps.63.074209
    [15] 王孟舟, 姜永恒, 刘天元, 孙成林, 里佐威. 络合物形成对电子-声子耦合的影响. 物理学报, 2013, 62(18): 187802. doi: 10.7498/aps.62.187802
    [16] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [17] 贾琳, 唐大伟, 张兴. 多晶碲化锌薄膜载能子超快动力学实验研究. 物理学报, 2015, 64(8): 087802. doi: 10.7498/aps.64.087802
    [18] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [19] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [20] 王晓雷, 张 楠, 赵友博, 李智磊, 翟宏琛, 朱晓农. 飞秒激光激发空气电离的阈值研究. 物理学报, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2174
  • PDF下载量:  706
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-27
  • 修回日期:  2011-12-06
  • 刊出日期:  2012-07-05

飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究

  • 1. 中国科学院工程热物理研究所, 北京 100190;
  • 2. 中国科学院研究生院, 北京 100039
    基金项目: 

    国家重大科学研究计划项目(批准号: 2012CB933200)和国家自然科学基金(批准号: 50876103) 资助的课题.

摘要: 随着微电子器件尺寸的减小、 工作频率的提高, 金属薄膜中电子与声子将处于非平衡状态, 这将导致微电子器件的热阻增大. 为准确地对这些微电子器件进行热管理, 电子-声子耦合系数的测量变得越来越重要. 本文采用飞秒激光抽运-探测热 反射法研究了不同厚度的金属纳米薄膜的非平衡传热过程. 通过抛物两步模型对实验数据进行拟合, 在拟合过程中引入电子温度与声子温度对反射率影响的比例关系, 从而优化了拟合结果. 通过对不同厚度的Ni膜与Al膜的电子-声子耦合系数的研究, 表明金属薄膜中的电子-声子耦合系数并不随薄膜厚度的改变发生变化. 实验结果还验证了探测光的反射率同时受到电子温度和声子温度的影响, 并通过数据分析量化了电子温度和声子温度对反射率的影响系数.

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回