搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学微腔中少光子数叠加态的耗散动力学

文洪燕 杨杨 韦联福

光学微腔中少光子数叠加态的耗散动力学

文洪燕, 杨杨, 韦联福
PDF
导出引用
导出核心图
  • 通过考察耗散光学腔中少光子数叠加态的Wigner函数随时间 的变化行为, 揭示其非经典特性的动力学演化. 结果表明, 初始时Wigner函数为负的少光子数叠加态, 在耗散过程中其负性逐渐减小 直至消失, 并最后达到一个稳定的正值. 但这并不意味着耗散量子态非经典特性的完全消失. 实际上, 作为非经典特性的另一个重要参量, 光子的二阶关联函数g(2)(0) (g(2)(0)g(2A)(0)却是一个随着耗散而改变的物理参量, 从而可以用于描述光学微腔中光量子态的耗散动力学行为. 最后, 我们给出一个在实验上如何制备少光子数叠加态并对其Wigner函数进行探测的方案.
    • 基金项目: 国家自然科学基金(批准号: 90921010, 11174373)资助的课题.
    [1]

    Wigner E P 1932 Phys. Rev. 40 749

    [2]

    Buzek V, Knight P L 1995 Progress in Optics in: Wolf E ed Vol. XXXIV, Edited by (Amsterdam: North Holland), and Refs. Therein.

    [3]

    Yang Y, Li F L 2009 J. Opt. Soc. Am. B 26 830

    [4]

    Hillery M, O' Connell R F, Scully M O, Wigner E P 1984 Phys. Rep. 106 121

    [5]

    Wei L F, Wang S J, Jie Q L 1997 Chin. Sci. Bull. 42 1686

    [6]

    Yang Q Y, Sun J W, Wei L F, Ding L E 2005 Acta Phys. Sin. 54 2704 (in Chinese) [杨庆怡, 孙敬文, 韦联福, 丁良恩 2005 物理学报 54 2704]

    [7]

    Li S B, Zou X B, Guo G C 2007 Phys. Rev. A 75 045801

    [8]

    Zhang M, Jia H Y 2008 Acta Phys. Sin. 57 880 (in Chinese) [张淼, 贾焕玉 2008 物理学报 57 880]

    [9]

    Hu L Y, Fan H Y 2010 J. Opt. Soc. Am. B 27 286

    [10]

    Lan H J, Pang H F, Wei L F 2009 Acta Phys. Sin. 58 8281 (in Chinese) [蓝海江, 庞华锋, 韦联福 2009 物理学报 58 8281]

    [11]

    Biswas A, Agarwal G S 2007 Phys. Rev. A 75 032104

    [12]

    Xu X X, Hu L Y, Fan H Y 2010 Opt. Commun. 283 1801

    [13]

    Hu L Y, Xu X X, Wang Z S, Xu X F 2010 Phys. Rev. A 82 043842

    [14]

    de Queiros I P, Cardoso W B, de Alemida N G 2007 J. Phys. B: At. Mol. Opt. Phys. 40 21

    [15]

    Buller G S, Collins R J 2010 Meas. Sci. Technol. 21 012002

    [16]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [17]

    Fan H Y, Hu L Y 2009 Opt. Commun. 282 4379

    [18]

    Gradshteyn I S, Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic)

    [19]

    William L H 1973 Quantum Statistical Properties of Radiation (New York: John Wiley)

    [20]

    Gardiner C W, Zoller P 2000 Quantum Noise (Berlin: Springer)

    [21]

    Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag)

    [22]

    Wüunsche A 2001 J. Comput. Appl. Math. 133 665

    [23]

    Wüunsche A 2000 J. Phys. A: Math. Gen. 33 1603

    [24]

    Dodono'v V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1

    [25]

    Agarwal G S, Tara K 1992 Phys. Rev. A 46 485

    [26]

    Lutterbach L G, Davidovich L 1997 Phys. Rev. Lett. 78 2547

    [27]

    Cahill K E, Glauber R J 1969 Phys. Rev. 177 1882

  • [1]

    Wigner E P 1932 Phys. Rev. 40 749

    [2]

    Buzek V, Knight P L 1995 Progress in Optics in: Wolf E ed Vol. XXXIV, Edited by (Amsterdam: North Holland), and Refs. Therein.

    [3]

    Yang Y, Li F L 2009 J. Opt. Soc. Am. B 26 830

    [4]

    Hillery M, O' Connell R F, Scully M O, Wigner E P 1984 Phys. Rep. 106 121

    [5]

    Wei L F, Wang S J, Jie Q L 1997 Chin. Sci. Bull. 42 1686

    [6]

    Yang Q Y, Sun J W, Wei L F, Ding L E 2005 Acta Phys. Sin. 54 2704 (in Chinese) [杨庆怡, 孙敬文, 韦联福, 丁良恩 2005 物理学报 54 2704]

    [7]

    Li S B, Zou X B, Guo G C 2007 Phys. Rev. A 75 045801

    [8]

    Zhang M, Jia H Y 2008 Acta Phys. Sin. 57 880 (in Chinese) [张淼, 贾焕玉 2008 物理学报 57 880]

    [9]

    Hu L Y, Fan H Y 2010 J. Opt. Soc. Am. B 27 286

    [10]

    Lan H J, Pang H F, Wei L F 2009 Acta Phys. Sin. 58 8281 (in Chinese) [蓝海江, 庞华锋, 韦联福 2009 物理学报 58 8281]

    [11]

    Biswas A, Agarwal G S 2007 Phys. Rev. A 75 032104

    [12]

    Xu X X, Hu L Y, Fan H Y 2010 Opt. Commun. 283 1801

    [13]

    Hu L Y, Xu X X, Wang Z S, Xu X F 2010 Phys. Rev. A 82 043842

    [14]

    de Queiros I P, Cardoso W B, de Alemida N G 2007 J. Phys. B: At. Mol. Opt. Phys. 40 21

    [15]

    Buller G S, Collins R J 2010 Meas. Sci. Technol. 21 012002

    [16]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [17]

    Fan H Y, Hu L Y 2009 Opt. Commun. 282 4379

    [18]

    Gradshteyn I S, Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic)

    [19]

    William L H 1973 Quantum Statistical Properties of Radiation (New York: John Wiley)

    [20]

    Gardiner C W, Zoller P 2000 Quantum Noise (Berlin: Springer)

    [21]

    Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag)

    [22]

    Wüunsche A 2001 J. Comput. Appl. Math. 133 665

    [23]

    Wüunsche A 2000 J. Phys. A: Math. Gen. 33 1603

    [24]

    Dodono'v V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1

    [25]

    Agarwal G S, Tara K 1992 Phys. Rev. A 46 485

    [26]

    Lutterbach L G, Davidovich L 1997 Phys. Rev. Lett. 78 2547

    [27]

    Cahill K E, Glauber R J 1969 Phys. Rev. 177 1882

  • [1] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
    [2] 李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才. 蓝移阱中单个铯原子基态磁不敏感态的相干操控. 物理学报, 2020, (): . doi: 10.7498/aps.69.20192001
    [3] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [4] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [5] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [6] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [7] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [8] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [9] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [10] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1278
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-11
  • 修回日期:  2012-03-08
  • 刊出日期:  2012-09-20

光学微腔中少光子数叠加态的耗散动力学

  • 1. 西南交通大学量子光电实验室, 成都 610031;
  • 2. 中山大学光电材料与技术国家重点实验室, 广州 510275
    基金项目: 

    国家自然科学基金(批准号: 90921010, 11174373)资助的课题.

摘要: 通过考察耗散光学腔中少光子数叠加态的Wigner函数随时间 的变化行为, 揭示其非经典特性的动力学演化. 结果表明, 初始时Wigner函数为负的少光子数叠加态, 在耗散过程中其负性逐渐减小 直至消失, 并最后达到一个稳定的正值. 但这并不意味着耗散量子态非经典特性的完全消失. 实际上, 作为非经典特性的另一个重要参量, 光子的二阶关联函数g(2)(0) (g(2)(0)g(2A)(0)却是一个随着耗散而改变的物理参量, 从而可以用于描述光学微腔中光量子态的耗散动力学行为. 最后, 我们给出一个在实验上如何制备少光子数叠加态并对其Wigner函数进行探测的方案.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回