搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙特卡罗模拟中相关变量随机数序列的产生方法

文德智 卓仁鸿 丁大杰 郑慧 成晶 李正宏

蒙特卡罗模拟中相关变量随机数序列的产生方法

文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏
PDF
导出引用
导出核心图
  • 蒙特卡罗模拟有时需要对多维相关随机变量进行模拟抽样. 本文介绍基于Choesky因子线性变换-非线性变换产生具有指定边缘分布和相关系数的多维相关随机变量抽样序列的一般方法, 给出一种简单易行的高效数值实现途径和一些模拟结果. 模拟结果表明, 该方法产生的各随机变量抽样序列间具有预期要求的相关性, 并能通过指定边缘分布Kolmogorov-Smirnov非参数假设检验. 对该方法应用中的一些限制问题进行了讨论.
    [1]

    Pei Lu cheng 1989 Computer Stochastic Simulation (Changsha: Hunan Science and technology Press) p1 (in Chinese) [裴鹿成 1989 计算机随机模拟 (长沙: 湖南科学技术出版社) 第1页]

    [2]

    Xu S Y 2006 Monte Carlo Method and its Application in Nuclear Physics Experiment (2nd Ed.) (Beijing: Atomic Energy Press) p1 (in Chinese) [许淑艳 2006 蒙特卡罗方法在实验核物理中的应用 (第二版) (北京:原子能出版社) 第1页]

    [3]

    Ivan T D 2008 Monte Carlo Methods for Applied Scientists (Singapore: World Scientific Publishing Co. Pte. Ltd.) p1

    [4]

    Peter J 2002 Monte Carlo methods in finance (Chichester: John Wiley & Sons, Inc.) p1

    [5]

    Cox M G, Siebert B R L 2006 Metrologia 43 S178

    [6]

    Matthew N O S 2009 Monter Carlo Methods for Electromagnetics (Boca Raton: CRC Press Taylor & Francis Group)P1

    [7]

    Landau D P, Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (New York: Cambridge University Press) p1

    [8]

    Ferguson D M, Siepmann J I, Truhlar D G 1999 Monte Carlo Methods in Chemical Physics (New York: John Wiley & Sons, Inc.) p1

    [9]

    Moonan W J 1957 J. Amer. Statist. Ass. 52 247

    [10]

    Box G E P, Muller M E 1958 Ann. Math. Statist. 29 610

    [11]

    Paul B, Fox B L, Linus E S (Translated by Yang Weigao) 1991 A guide to Simulation (Beijing: Science Press) p186 (in Chinese) [(美)布雷特利等著 杨惟高等译 1991 模拟导论(北京:机械工业出版社) 第186页]

    [12]

    Xu Z J 1985 Monte Carlo Method (Shanghai: Shanghai Science and Technology Press) p132 (in Chinese) 徐钟济 1985 蒙特卡罗方法上海:上海科学技术出版社 第132页)

    [13]

    Zhu B R 1987 Introduction to Monte Carlo Method (Ji-nan: Shandong University Press) p108 (in Chinese) [朱本仁 1987 蒙特卡罗方法引论 (济南: 山东大学出版社 第108页]

    [14]

    Niederreiter H 1992 Random Number Generation and Quasi-Monte Carlo Methods(Philadelphia: Society for Industrial and Applied Mathematics)P161

    [15]

    Rubinstein R, Kroese D P 2008 Simulation and the monte carlo method (2nd Ed.)(Hoboken: John Wiley & Sons, Inc.) p65

    [16]

    Kalos M H, Whitlock P A 2008 Monte Carlo Methods (2nd Ed.) (Weinheim: WILEY-VCH Verlag GmbH & Co.) p35

    [17]

    li S T, Hammond J L 1975 IEEE Transactions on Systems: Man, and Cybernetics SMC-5 557

    [18]

    Ronald L I, Conover W J 1982 Communications in Statistics-Simulation and Computation 11 311

    [19]

    Ronald L I, James M D 1982 Communications in Statistics-Simulation and Computation 11 335

    [20]

    Charles N H 1999 Risk Analysis 19 1205

    [21]

    Chen J T 2005 European Journal of Operational Research 167 226

    [22]

    Michael F 1999 Communications in Statistics-Simulation and Computation 28 785

    [23]

    Jing C 2005 M. S. Dissertation (Dalian: Dalian University of Technology) p31 (in Chinese) [金畅 2005 硕士学位论文(大连: 大连理工大学)第31页]

    [24]

    Wang Z K 1976 Probability theory and its application (1st Ed.) (Beijing: Science press) P105 (in Chinese) [王梓坤 1976 概率论基础及其应用(第一版)(北京:科学出版社) 第105页]

    [25]

    Salter M J, Ridler N M, Cox M G 2000 Technical Report CETM 22 (Teddington: National Physical Laboratory) p14

    [26]

    Nelsen R B 2006 An introduction to Copulas (2nd Ed.) (New York: Springer) p1

    [27]

    Zhang Y T 2002 Statistical Study 4 48 (in Chinese) [张尧庭 2002 统计研究 4 48]

  • [1]

    Pei Lu cheng 1989 Computer Stochastic Simulation (Changsha: Hunan Science and technology Press) p1 (in Chinese) [裴鹿成 1989 计算机随机模拟 (长沙: 湖南科学技术出版社) 第1页]

    [2]

    Xu S Y 2006 Monte Carlo Method and its Application in Nuclear Physics Experiment (2nd Ed.) (Beijing: Atomic Energy Press) p1 (in Chinese) [许淑艳 2006 蒙特卡罗方法在实验核物理中的应用 (第二版) (北京:原子能出版社) 第1页]

    [3]

    Ivan T D 2008 Monte Carlo Methods for Applied Scientists (Singapore: World Scientific Publishing Co. Pte. Ltd.) p1

    [4]

    Peter J 2002 Monte Carlo methods in finance (Chichester: John Wiley & Sons, Inc.) p1

    [5]

    Cox M G, Siebert B R L 2006 Metrologia 43 S178

    [6]

    Matthew N O S 2009 Monter Carlo Methods for Electromagnetics (Boca Raton: CRC Press Taylor & Francis Group)P1

    [7]

    Landau D P, Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (New York: Cambridge University Press) p1

    [8]

    Ferguson D M, Siepmann J I, Truhlar D G 1999 Monte Carlo Methods in Chemical Physics (New York: John Wiley & Sons, Inc.) p1

    [9]

    Moonan W J 1957 J. Amer. Statist. Ass. 52 247

    [10]

    Box G E P, Muller M E 1958 Ann. Math. Statist. 29 610

    [11]

    Paul B, Fox B L, Linus E S (Translated by Yang Weigao) 1991 A guide to Simulation (Beijing: Science Press) p186 (in Chinese) [(美)布雷特利等著 杨惟高等译 1991 模拟导论(北京:机械工业出版社) 第186页]

    [12]

    Xu Z J 1985 Monte Carlo Method (Shanghai: Shanghai Science and Technology Press) p132 (in Chinese) 徐钟济 1985 蒙特卡罗方法上海:上海科学技术出版社 第132页)

    [13]

    Zhu B R 1987 Introduction to Monte Carlo Method (Ji-nan: Shandong University Press) p108 (in Chinese) [朱本仁 1987 蒙特卡罗方法引论 (济南: 山东大学出版社 第108页]

    [14]

    Niederreiter H 1992 Random Number Generation and Quasi-Monte Carlo Methods(Philadelphia: Society for Industrial and Applied Mathematics)P161

    [15]

    Rubinstein R, Kroese D P 2008 Simulation and the monte carlo method (2nd Ed.)(Hoboken: John Wiley & Sons, Inc.) p65

    [16]

    Kalos M H, Whitlock P A 2008 Monte Carlo Methods (2nd Ed.) (Weinheim: WILEY-VCH Verlag GmbH & Co.) p35

    [17]

    li S T, Hammond J L 1975 IEEE Transactions on Systems: Man, and Cybernetics SMC-5 557

    [18]

    Ronald L I, Conover W J 1982 Communications in Statistics-Simulation and Computation 11 311

    [19]

    Ronald L I, James M D 1982 Communications in Statistics-Simulation and Computation 11 335

    [20]

    Charles N H 1999 Risk Analysis 19 1205

    [21]

    Chen J T 2005 European Journal of Operational Research 167 226

    [22]

    Michael F 1999 Communications in Statistics-Simulation and Computation 28 785

    [23]

    Jing C 2005 M. S. Dissertation (Dalian: Dalian University of Technology) p31 (in Chinese) [金畅 2005 硕士学位论文(大连: 大连理工大学)第31页]

    [24]

    Wang Z K 1976 Probability theory and its application (1st Ed.) (Beijing: Science press) P105 (in Chinese) [王梓坤 1976 概率论基础及其应用(第一版)(北京:科学出版社) 第105页]

    [25]

    Salter M J, Ridler N M, Cox M G 2000 Technical Report CETM 22 (Teddington: National Physical Laboratory) p14

    [26]

    Nelsen R B 2006 An introduction to Copulas (2nd Ed.) (New York: Springer) p1

    [27]

    Zhang Y T 2002 Statistical Study 4 48 (in Chinese) [张尧庭 2002 统计研究 4 48]

  • [1] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [2] 张识, 王攀, 张瑞浩, 陈红. 选取任意庞加莱截面的新方法. 物理学报, 2020, 69(4): 040503. doi: 10.7498/aps.69.20191585
    [3] 王凤阳, 胡仁志, 谢品华, 王怡慧, 陈浩, 张国贤, 刘文清. 基于同步光解的OH自由基标定方法研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200153
    [4] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • 引用本文:
    Citation:
计量
  • 文章访问数:  6512
  • PDF下载量:  14746
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-05
  • 修回日期:  2012-06-14
  • 刊出日期:  2012-11-20

蒙特卡罗模拟中相关变量随机数序列的产生方法

  • 1. 中国工程物理研究院核物理与化学研究所, 绵阳 621900

摘要: 蒙特卡罗模拟有时需要对多维相关随机变量进行模拟抽样. 本文介绍基于Choesky因子线性变换-非线性变换产生具有指定边缘分布和相关系数的多维相关随机变量抽样序列的一般方法, 给出一种简单易行的高效数值实现途径和一些模拟结果. 模拟结果表明, 该方法产生的各随机变量抽样序列间具有预期要求的相关性, 并能通过指定边缘分布Kolmogorov-Smirnov非参数假设检验. 对该方法应用中的一些限制问题进行了讨论.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回