搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米颗粒吸附岩心表面的强疏水特征

王新亮 狄勤丰 张任良 丁伟朋 龚玮 程毅翀

纳米颗粒吸附岩心表面的强疏水特征

王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀
PDF
导出引用
导出核心图
  • 通过将疏水的纳米颗粒吸附在岩心微通道壁面, 可以形成具有类荷叶表面的双重微结构表面, 从而在注水开发的过程中在岩心微通道壁面产生水流滑移, 达到降低注水压力、增加注水量的目的. 研究纳米颗粒吸附岩心切片表面的强疏水特征对纳米颗粒吸附法减阻技术具有重要的意义. 本文简要叙述了荷叶、蚊子腿以及水黾腿的超疏水特征; 介绍了制备具有亚微米、纳米双重微结构的强疏水表面的纳米颗粒吸附法; 给出了规则排列时纳米颗粒吸附岩心切片表面的强疏水特征的物理机制, 根据真实的纳米颗粒吸附岩心切片, 给出了接触角的范围, 计算结果与实验数据一致. 岩心流动实验结果表明, 经纳米颗粒分散液处理后, 岩心的平均水相渗透率提高94%.
    • 基金项目: 国家自然科学基金(批准号: 50874071)、国家高技术研究发展计划(批准号: 2008AA06Z201)、上海市科委重点科技攻关计划(批准号: 071605102)、 上海高校创新团队建设项目、上海市教委科研创新项目(批准号: 11CXY32)和上海领军人才基金资助的课题.
    [1]

    Neinhuis C, Barthlott W 1997 Annals of Botany 79 667

    [2]

    Shibuichi S, Yamamoto T, Onda T, Tsuiji K 1998 Langmuir 208 287

    [3]

    Gao X F, Jiang L 2006 Physics 35 559 (in Chinese) [高雪峰, 江雷 2006 物理 35 559]

    [4]

    Cottin B C, Barrat J L, Bocquet L, Charlaix E 2003 Nat. Mater. 2 237

    [5]

    Choi C, Westin K, Breuer K 2003 Physics of Fluids 15 2897

    [6]

    Wang X L, Di Q F, Zhang R L, Gu C Y 2010 Adv. Mech. 40 241 (in Chinese) [王新亮, 狄勤丰, 张任良, 顾春元 2010 力学进展 40 241]

    [7]

    Feng L, Li S, Li Y, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D 2002 Adv. Mater. 14 1857

    [8]

    Blossey R 2003 Nat. Mater. 2 301

    [9]

    Kong X Q, Wu C W 2010 Chin. Sci. Bull. 55 1589 (in Chinese) [孔祥清, 吴承伟 2010 科学通报 55 1589]

    [10]

    Gao X F, Jiang L 2003 Nature 432 36

    [11]

    Lauga E, Brenner M P, Stone H A 2005 Handbook of Experimental Fluid Dynamics (New York: Springer) Chap. 15

    [12]

    Voronov R S, Papavassiliou D V 2008 Ind. Eng. Chem. Res. 47 2455

    [13]

    Nishino T, Meguro M, Nakamae K Matsushita M, Ueda Y 1999 Langmuir 15 4321

    [14]

    Feng L, Song Y, Zhai J, Liu B, Xu J, Jiang L, Zhu D 2003 Angew. Chem. Int. Ed. 42 800

    [15]

    Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D 2004 Angew. Chem. Int. Ed. 43 2012

    [16]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 物理学报 57 3071]

    [17]

    Patankar N A 2003 Langmuir 19 1249

    [18]

    Li D, Di Q F, Li J Y, Qian Y H, Fang H P 2007 Chin. Phys. Lett. 24 1021

    [19]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [20]

    Di Q F, Shen C, Wang Z H, Gu C Y, Shi L Y, Fang H P 2009 Acta Petrolei Sinica 30 125 (in Chinese) [狄勤丰, 沈琛, 王掌洪, 顾春元, 施利毅, 方海平 2009 石油学报 30 125]

    [21]

    Rothstein J P 2010 Annual Review of Fluid Mechanics 42 89

    [22]

    Huang D M, Sendner C, Horinek D 2008 Phys. Rev. Lett. 101 226101

    [23]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [24]

    Gong M G, Xu X L, Yang Z 2010 Chin. Phys. B 19 056701

  • [1]

    Neinhuis C, Barthlott W 1997 Annals of Botany 79 667

    [2]

    Shibuichi S, Yamamoto T, Onda T, Tsuiji K 1998 Langmuir 208 287

    [3]

    Gao X F, Jiang L 2006 Physics 35 559 (in Chinese) [高雪峰, 江雷 2006 物理 35 559]

    [4]

    Cottin B C, Barrat J L, Bocquet L, Charlaix E 2003 Nat. Mater. 2 237

    [5]

    Choi C, Westin K, Breuer K 2003 Physics of Fluids 15 2897

    [6]

    Wang X L, Di Q F, Zhang R L, Gu C Y 2010 Adv. Mech. 40 241 (in Chinese) [王新亮, 狄勤丰, 张任良, 顾春元 2010 力学进展 40 241]

    [7]

    Feng L, Li S, Li Y, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D 2002 Adv. Mater. 14 1857

    [8]

    Blossey R 2003 Nat. Mater. 2 301

    [9]

    Kong X Q, Wu C W 2010 Chin. Sci. Bull. 55 1589 (in Chinese) [孔祥清, 吴承伟 2010 科学通报 55 1589]

    [10]

    Gao X F, Jiang L 2003 Nature 432 36

    [11]

    Lauga E, Brenner M P, Stone H A 2005 Handbook of Experimental Fluid Dynamics (New York: Springer) Chap. 15

    [12]

    Voronov R S, Papavassiliou D V 2008 Ind. Eng. Chem. Res. 47 2455

    [13]

    Nishino T, Meguro M, Nakamae K Matsushita M, Ueda Y 1999 Langmuir 15 4321

    [14]

    Feng L, Song Y, Zhai J, Liu B, Xu J, Jiang L, Zhu D 2003 Angew. Chem. Int. Ed. 42 800

    [15]

    Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D 2004 Angew. Chem. Int. Ed. 43 2012

    [16]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 物理学报 57 3071]

    [17]

    Patankar N A 2003 Langmuir 19 1249

    [18]

    Li D, Di Q F, Li J Y, Qian Y H, Fang H P 2007 Chin. Phys. Lett. 24 1021

    [19]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [20]

    Di Q F, Shen C, Wang Z H, Gu C Y, Shi L Y, Fang H P 2009 Acta Petrolei Sinica 30 125 (in Chinese) [狄勤丰, 沈琛, 王掌洪, 顾春元, 施利毅, 方海平 2009 石油学报 30 125]

    [21]

    Rothstein J P 2010 Annual Review of Fluid Mechanics 42 89

    [22]

    Huang D M, Sendner C, Horinek D 2008 Phys. Rev. Lett. 101 226101

    [23]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [24]

    Gong M G, Xu X L, Yang Z 2010 Chin. Phys. B 19 056701

  • [1] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [2] 杨建刚, 胡春波, 朱小飞, 李悦, 胡旭, 邓哲. 粉末颗粒气力加注特性实验研究. 物理学报, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [3] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [4] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [5] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [6] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [7] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [8] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [9] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [10] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [11] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [12] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [13] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [14] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [15] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [16] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1526
  • PDF下载量:  763
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-06
  • 修回日期:  2012-05-31
  • 刊出日期:  2012-11-05

纳米颗粒吸附岩心表面的强疏水特征

  • 1. 上海大学上海市应用数学和力学研究所, 上海 200072;
  • 2. 上海大学上海市力学在能源工程中的应用重点实验室, 上海 200072
    基金项目: 

    国家自然科学基金(批准号: 50874071)、国家高技术研究发展计划(批准号: 2008AA06Z201)、上海市科委重点科技攻关计划(批准号: 071605102)、 上海高校创新团队建设项目、上海市教委科研创新项目(批准号: 11CXY32)和上海领军人才基金资助的课题.

摘要: 通过将疏水的纳米颗粒吸附在岩心微通道壁面, 可以形成具有类荷叶表面的双重微结构表面, 从而在注水开发的过程中在岩心微通道壁面产生水流滑移, 达到降低注水压力、增加注水量的目的. 研究纳米颗粒吸附岩心切片表面的强疏水特征对纳米颗粒吸附法减阻技术具有重要的意义. 本文简要叙述了荷叶、蚊子腿以及水黾腿的超疏水特征; 介绍了制备具有亚微米、纳米双重微结构的强疏水表面的纳米颗粒吸附法; 给出了规则排列时纳米颗粒吸附岩心切片表面的强疏水特征的物理机制, 根据真实的纳米颗粒吸附岩心切片, 给出了接触角的范围, 计算结果与实验数据一致. 岩心流动实验结果表明, 经纳米颗粒分散液处理后, 岩心的平均水相渗透率提高94%.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回