-
结合原子间短程作用势(Brenner势)和长程作用势(Lennard-Jones势), 利用分子动力学方法对各种锥角的碳纳米锥进行拉伸和压缩实验, 获得其载荷-应变关系曲线、受拉/压载荷极限、应变极限和构形演变等力学特性, 并与等量原子组成的碳纳米管进行比较研究. 研究结果表明, 等量碳原子组成的碳纳米锥的受拉/压载荷极限随着锥角的增大先是增大后减小, 受拉/压应变极限则随着锥角的增大而增大. 与碳纳米锥相比, 等量碳原子组成的碳纳米管的受拉/压载荷极限和应变极限显得既不突出也不逊色. 在受压构形演化方面, 与碳纳米管丰富的径向屈曲/扭转/侧向屈曲组合形变不同, 112.88°和83.62°锥角的碳纳米锥受压沿轴向完美内陷, 而60.0°和38.94°锥角的碳纳米锥受压发生侧向屈曲.
[1] Iijima S 1991 Nature 354 56
[2] Mahar B, Laslau C, Yip R, Sun Y 2007 Sens. J. IEEE. 7 266
[3] Hill E W, Vijayaragahvan V, Novoselov K 2011 Sens. J. IEEE. 11 3161
[4] Adisa O O, Cox B J, Hill J M 2011 J. Phys. Chem. C 115 24528
[5] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132
[6] Ge M, Sattler K 1994 Chem. Phys. Lett. 220 192
[7] Krishnan A, Dujardin E, Treacy M M J, Hugdahl J, Lynum S, Ebbesen T W 1997 Nature 388 451
[8] Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K 1999 Chem. Phys. Lett. 309 165
[9] Yang N, Zhang G, Li B 2008 Appl. Phys. Lett. 93 243111
[10] Lu X, Yang Q, Xiao C, Hirose A 2006 Appl. Phys. A: Mate. Sci. Proc. 82 293
[11] Zhang S, Yao Z, Zhao S, Zhang E 2006 Appl. Phys. Lett. 89 131923
[12] Wei C Y, Srivastava D 2004 Appl. Phys. Lett. 85 2208
[13] Jordan S P, Crespi V H 2004 Phys. Rev. Lett. 93 255504
[14] Tsai P C, Fang T H 2007 Nanotechnology 18 105702
[15] Wei J X, Liew K M, He X Q 2007 Appl. Phys. Lett. 91 261906
[16] Liew K M, Wei J X, He X Q 2007 Phys. Rev. B 75 195435
[17] Firouz-Abadi R D, Amini H, Hosseinian A R 2012 Appl. Phys. Lett. 100 173108
[18] Shen H J, Shi Y J 2007 J. Atom. Mole. Phys. 24 883 (in Chinese) [沈海军, 史海进 2007 原子与分子物理学报 24 883]
[19] Plimpton S 1995 J. Comp. Phys. 117 1
[20] Brenner D W 1990 Phys. Rev. B 42 9458
[21] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Cond. Matt. 14 783
[22] Liew K M, Wong C H, He X Q, Tan M J 2005 Phys. Rev. B 71 075424
[23] Fu C X, Chen Y F, Jiao J W 2008 Sci. China E: Tech. Sci. 38 411 (in Chinese) [付称心, 陈云飞, 焦继伟 2008 中国科学E辑: 技术科学 38 411]
-
[1] Iijima S 1991 Nature 354 56
[2] Mahar B, Laslau C, Yip R, Sun Y 2007 Sens. J. IEEE. 7 266
[3] Hill E W, Vijayaragahvan V, Novoselov K 2011 Sens. J. IEEE. 11 3161
[4] Adisa O O, Cox B J, Hill J M 2011 J. Phys. Chem. C 115 24528
[5] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132
[6] Ge M, Sattler K 1994 Chem. Phys. Lett. 220 192
[7] Krishnan A, Dujardin E, Treacy M M J, Hugdahl J, Lynum S, Ebbesen T W 1997 Nature 388 451
[8] Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K 1999 Chem. Phys. Lett. 309 165
[9] Yang N, Zhang G, Li B 2008 Appl. Phys. Lett. 93 243111
[10] Lu X, Yang Q, Xiao C, Hirose A 2006 Appl. Phys. A: Mate. Sci. Proc. 82 293
[11] Zhang S, Yao Z, Zhao S, Zhang E 2006 Appl. Phys. Lett. 89 131923
[12] Wei C Y, Srivastava D 2004 Appl. Phys. Lett. 85 2208
[13] Jordan S P, Crespi V H 2004 Phys. Rev. Lett. 93 255504
[14] Tsai P C, Fang T H 2007 Nanotechnology 18 105702
[15] Wei J X, Liew K M, He X Q 2007 Appl. Phys. Lett. 91 261906
[16] Liew K M, Wei J X, He X Q 2007 Phys. Rev. B 75 195435
[17] Firouz-Abadi R D, Amini H, Hosseinian A R 2012 Appl. Phys. Lett. 100 173108
[18] Shen H J, Shi Y J 2007 J. Atom. Mole. Phys. 24 883 (in Chinese) [沈海军, 史海进 2007 原子与分子物理学报 24 883]
[19] Plimpton S 1995 J. Comp. Phys. 117 1
[20] Brenner D W 1990 Phys. Rev. B 42 9458
[21] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Cond. Matt. 14 783
[22] Liew K M, Wong C H, He X Q, Tan M J 2005 Phys. Rev. B 71 075424
[23] Fu C X, Chen Y F, Jiao J W 2008 Sci. China E: Tech. Sci. 38 411 (in Chinese) [付称心, 陈云飞, 焦继伟 2008 中国科学E辑: 技术科学 38 411]
引用本文: |
Citation: |
计量
- 文章访问数: 1980
- PDF下载量: 719
- 被引次数: 0