搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌入线型缺陷的石墨纳米带的热输运性质

姚海峰 谢月娥 欧阳滔 陈元平

嵌入线型缺陷的石墨纳米带的热输运性质

姚海峰, 谢月娥, 欧阳滔, 陈元平
PDF
导出引用
导出核心图
  • 采用非平衡格林函数方法研究了嵌入有限长、半无限长、 无限长线型缺陷的锯齿型石墨纳米带 (ZGNR)的热输运性质.结果表明, 缺陷类型和缺陷长度对ZGNR的热导有重要影响. 当嵌入的线型缺陷长度相同时, 包含t5t7线型缺陷的石墨纳米带比包含Stone-Wales线型缺陷的条带热导低. 对于嵌入有限长、同种缺陷的ZGNR, 其热导随线型缺陷的长度增加而降低, 但是当线型缺陷很长时, 其热导对缺陷长度的变化不再敏感.通过比较嵌入有限长、半无限长、无限长线型缺陷的ZGNR, 我们发现嵌入无限长缺陷的条带比嵌入半无限长缺陷的条带热导高, 而后者比嵌入有限长线型缺陷的条带热导高. 这主要是因为在这几种结构中声子传输方向的散射界面数不同所导致的. 散射界面越多, 对应的热导就越低. 通过分析透射曲线和声子局域态密度图, 解释了这些热输运现象. 这些研究结果表明线型缺陷能够有效地调控石墨纳米带的热输运性质.
    • 基金项目: 国家自然科学基金(批准号: 11074213, 51176161, 51006086) 和湖南省自然科学基金省市联合项目(批准号: 10JJ9001) 资助的课题.
    [1]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009物理学报 58 8537]

    [2]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [3]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马 丽, 陈 军, 杨 帆, 屈帆明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 物理学报 58 5726]

    [4]

    Xie Y E, Chen Y P, Zhong J X 2009 J. Appl. Phys. 106 103714

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [7]

    Xu Z, Zheng Q S, Chen G 2007 Appl. Phys. Lett. 90 223115

    [8]

    Liao W H, Zhou G H, Xi F 2008 J. Appl. Phys. 104 126105

    [9]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦 勇, 童国平 2009 物理学报 58 1931]

    [10]

    Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [11]

    Trauzettel B B, Bulaev D V, Loss D, Burkard G 2006 Nat. Phys. 3 192

    [12]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. ReV. B 54 17954

    [13]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱 明, 丁开和 2009 物理学报 58 7156]

    [14]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [15]

    Zhang Y L, Liu K H, Wang W L, Bai X D, Wang E G 2009 Physics 38 401 (in Chinese) [张盈利, 刘开辉, 王文龙, 白雪冬, 王恩哥 2009 物理 38 401]

    [16]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [17]

    Kotakoski J, Krasheninnikov A V, Kaiser V, Meyer J C 2011 arXiv: 1102.0174v1 [cond-mat.mtrl-sci]

    [18]

    Ma J, Alfe D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407

    [19]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501

    [20]

    Peng X Y, Ahuja R 2008 Nano Lett. 8 4464

    [21]

    Lu P, Zhang Z H, Guo W L 2009 Phys. Lett. A 373 3354

    [22]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nanotechnology 5 326

    [23]

    Terrones H, L R, Terrones M, Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501

    [24]

    Botello-Mëndez A R, Declerck X, Terrones M, Terrones H, Charlier J C 2011 Nanoscale 3 2868

    [25]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461

    [26]

    Kou L Z, Tang C, Guo W L, Chen C F 2011 Acs. Nano 5 1012

    [27]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [28]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [29]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006物理学报 55 3552]

    [30]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [31]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese) [杨 平, 王晓亮, 李 培, 王 欢, 张立强, 谢方伟 2012 物理学报 61 076501]

    [32]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [33]

    Hao F, Fang D N, Xu Z P 2011 Appl. Phys. Lett. 99 041901

    [34]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [35]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170

    [36]

    Yamamoto T, Watanabe K, Mii K 2004 Phys. Rev. B 70 245402

    [37]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [38]

    Mingo N 2006 Phys. Rev. B 74 125402

    [39]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [40]

    Lopez S M P, Sancho J M 1985 Rubio J. Phys. F: Met. Phys. 15 851

  • [1]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009物理学报 58 8537]

    [2]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [3]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马 丽, 陈 军, 杨 帆, 屈帆明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 物理学报 58 5726]

    [4]

    Xie Y E, Chen Y P, Zhong J X 2009 J. Appl. Phys. 106 103714

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [7]

    Xu Z, Zheng Q S, Chen G 2007 Appl. Phys. Lett. 90 223115

    [8]

    Liao W H, Zhou G H, Xi F 2008 J. Appl. Phys. 104 126105

    [9]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦 勇, 童国平 2009 物理学报 58 1931]

    [10]

    Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [11]

    Trauzettel B B, Bulaev D V, Loss D, Burkard G 2006 Nat. Phys. 3 192

    [12]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. ReV. B 54 17954

    [13]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱 明, 丁开和 2009 物理学报 58 7156]

    [14]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [15]

    Zhang Y L, Liu K H, Wang W L, Bai X D, Wang E G 2009 Physics 38 401 (in Chinese) [张盈利, 刘开辉, 王文龙, 白雪冬, 王恩哥 2009 物理 38 401]

    [16]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [17]

    Kotakoski J, Krasheninnikov A V, Kaiser V, Meyer J C 2011 arXiv: 1102.0174v1 [cond-mat.mtrl-sci]

    [18]

    Ma J, Alfe D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407

    [19]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501

    [20]

    Peng X Y, Ahuja R 2008 Nano Lett. 8 4464

    [21]

    Lu P, Zhang Z H, Guo W L 2009 Phys. Lett. A 373 3354

    [22]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nanotechnology 5 326

    [23]

    Terrones H, L R, Terrones M, Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501

    [24]

    Botello-Mëndez A R, Declerck X, Terrones M, Terrones H, Charlier J C 2011 Nanoscale 3 2868

    [25]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461

    [26]

    Kou L Z, Tang C, Guo W L, Chen C F 2011 Acs. Nano 5 1012

    [27]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [28]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [29]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006物理学报 55 3552]

    [30]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [31]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese) [杨 平, 王晓亮, 李 培, 王 欢, 张立强, 谢方伟 2012 物理学报 61 076501]

    [32]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [33]

    Hao F, Fang D N, Xu Z P 2011 Appl. Phys. Lett. 99 041901

    [34]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [35]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170

    [36]

    Yamamoto T, Watanabe K, Mii K 2004 Phys. Rev. B 70 245402

    [37]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [38]

    Mingo N 2006 Phys. Rev. B 74 125402

    [39]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [40]

    Lopez S M P, Sancho J M 1985 Rubio J. Phys. F: Met. Phys. 15 851

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1889
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-10
  • 修回日期:  2012-11-14
  • 刊出日期:  2013-03-05

嵌入线型缺陷的石墨纳米带的热输运性质

  • 1. 湘潭大学材料与光电物理学院, 量子工程与微纳能源研究所, 湘潭 411105
    基金项目: 

    国家自然科学基金(批准号: 11074213, 51176161, 51006086) 和湖南省自然科学基金省市联合项目(批准号: 10JJ9001) 资助的课题.

摘要: 采用非平衡格林函数方法研究了嵌入有限长、半无限长、 无限长线型缺陷的锯齿型石墨纳米带 (ZGNR)的热输运性质.结果表明, 缺陷类型和缺陷长度对ZGNR的热导有重要影响. 当嵌入的线型缺陷长度相同时, 包含t5t7线型缺陷的石墨纳米带比包含Stone-Wales线型缺陷的条带热导低. 对于嵌入有限长、同种缺陷的ZGNR, 其热导随线型缺陷的长度增加而降低, 但是当线型缺陷很长时, 其热导对缺陷长度的变化不再敏感.通过比较嵌入有限长、半无限长、无限长线型缺陷的ZGNR, 我们发现嵌入无限长缺陷的条带比嵌入半无限长缺陷的条带热导高, 而后者比嵌入有限长线型缺陷的条带热导高. 这主要是因为在这几种结构中声子传输方向的散射界面数不同所导致的. 散射界面越多, 对应的热导就越低. 通过分析透射曲线和声子局域态密度图, 解释了这些热输运现象. 这些研究结果表明线型缺陷能够有效地调控石墨纳米带的热输运性质.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回