搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CVD金刚石中的氮对等离子体刻蚀的影响

吴俊 马志斌 沈武林 严垒 潘鑫 汪建华

CVD金刚石中的氮对等离子体刻蚀的影响

吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华
PDF
导出引用
导出核心图
  • 采用非对称磁镜场电子回旋共振等离子体分别对沉积过程中掺氮和未掺氮的化学气相沉积金刚石膜进行了刻蚀研究, 结果表明: 掺氮制备的金刚石膜的刻蚀主要集中在晶棱处, 经过4h刻蚀后其表面粗糙度由刻蚀前的4.761 μm下降至3.701 μm, 刻蚀对金刚石膜的表面粗糙度的影响较小; 而未掺氮制备的金刚石膜的刻蚀表现为晶面的均匀刻蚀, 晶粒坍塌,刻蚀4h后其表面粗糙度由刻蚀前的3.061 μm下降至1.083 μm. 刻蚀导致表面粗糙度显著降低. 上述差别的主要原因在于金刚石膜沉积过程中掺氮导致氮缺陷在金刚石晶棱处富集, 晶棱处电子发射加强, 引导离子向晶棱运动并产生刻蚀, 从而加剧晶棱的刻蚀. 而未掺氮金刚石膜,其缺陷相对较少且分布较均匀 ,刻蚀时整体呈现为 (111) 晶面被均匀刻蚀继而晶粒坍塌的现象.
    • 基金项目: 国家自然科学基金 (批准号: 10875093) 资助的课题.
    [1]

    Chen R F, Zuo D W, Lu W Z, Li D S, Xu F, Ji T, Wang M 2008 Key Engineering Materials 359-360 285

    [2]

    Hocheng H, Chen C C 2006 Materials Science Forum 505 1225

    [3]

    Zaitsev A M, Kosaca G, Richarz B, Raiko V, Job R, Fries T, Fahrner W R 1998 Diamond and Related Materials 7 1108

    [4]

    Tokarev V N, Wilson J I B, Jubber M G, John P, Milne D K 1995 Diamond and Related Materials 4 169

    [5]

    Whetten T J, Angela A 1984 Journal of Vacuum Science and Technology A 2 477

    [6]

    Kiyohara S, Yagi Y, Mori K 1999 Nanotechnology 10 385

    [7]

    Buchkremer-Hermanns H, Long C, Weiss H 1996 Diamond and Related Materials 5 845

    [8]

    Bernard M, Deneuville A, Ortega L, Ayadi K, Muret P 2004 Diamond and Related Materials 13 287

    [9]

    Tan B S, Ma Z B, Shen W L, Wu Z H 2010 High Power Laser and Particle Beams 22 1887 (in Chinese) [谭必松, 马志斌, 沈武林, 吴振辉 2010 强激光与粒子束 22 1887]

    [10]

    Silva F, Sussmann R S, Bénédic F, Gicquel A 2003 Diamond and Related Materials 12 369

    [11]

    Zheng X F, Ma Z B, Zhang L, Wang J H 2007 Diamond and Related Materials 16 1500

    [12]

    Wu J, Ma Z B, Shen W L 2012 High Power Laser and Particle Beams 24 2459 (in Chinese) [吴俊, 马志斌, 沈武林 2012 强激光与粒子束 24 2459]

    [13]

    Kiyohara S, Miyamoto I 1996 Nanotechnology 7 270

    [14]

    Shen W L, Ma Z B, Tan B S, Wu J, Wang J H 2011 Acta Phys. Sin. 60 105204 (in Chinese) [沈武林, 马志斌, 谭必松, 吴俊, 汪建华 2011 物理学报 60 105204]

    [15]

    Li M J, L X Y, Sun B R, Li C Y, Li B, Jin Z S 2007 New Carbon Materials 22 183 (in Chinese) [李明吉, 吕宪义, 孙宝茹, 李春燕, 李博, 金曾孙 2007 新型碳材料 22 183]

    [16]

    Ahedo E 1997 Physics of Plasmas 4 4419

    [17]

    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (London: Institute of Physics Publishing) p98

    [18]

    Zou X, Liu H P, Gu X E 2008 Acta Phys. Sin. 57 5111 (in Chinese) [邹秀, 刘惠平, 谷秀娥 2008 物理学报 57 5111]

    [19]

    Devaux S, Manfredi G 2008 Plasma Physics and Controlled Fusion 50 025009

    [20]

    Show Y, Matsukawa T, Ito H, Iwase M, Izumi T 2000 Thin Solid Films 377-378 214

    [21]

    Boettger E, Bluhm A, Jiang X, Schäfer L, Klages C P 2008 Journal of Applied Physic 77 6332

    [22]

    Xu N S, Tzeng Y, Latham R V 1993 Journal of Phys. D: Applied Physics 26 1776

    [23]

    Geis M W, Twichell J C, Lyszczarz T M 1996 Journal of Vacuum Science and Technology B 14 2060

    [24]

    Li J J, Wu H H, Long B Y, L X Y, Hu C Q, Jin Z S 2005 Acta Phys. Sin. 54 1447 (in Chinese) [李俊杰, 吴汉华, 龙北玉, 吕宪义, 胡超权, 金曾孙 2005 物理学报 54 1447]

    [25]

    Masuzawa T, SatoY, Kudo Y, Saito I, Yamada T, Koh A T T, Chua D H C, Yoshino T, Chun W J, Yamasaki S, Okano K 2011 Journal of Vacuum Science and Technology B 29 02B119

  • [1]

    Chen R F, Zuo D W, Lu W Z, Li D S, Xu F, Ji T, Wang M 2008 Key Engineering Materials 359-360 285

    [2]

    Hocheng H, Chen C C 2006 Materials Science Forum 505 1225

    [3]

    Zaitsev A M, Kosaca G, Richarz B, Raiko V, Job R, Fries T, Fahrner W R 1998 Diamond and Related Materials 7 1108

    [4]

    Tokarev V N, Wilson J I B, Jubber M G, John P, Milne D K 1995 Diamond and Related Materials 4 169

    [5]

    Whetten T J, Angela A 1984 Journal of Vacuum Science and Technology A 2 477

    [6]

    Kiyohara S, Yagi Y, Mori K 1999 Nanotechnology 10 385

    [7]

    Buchkremer-Hermanns H, Long C, Weiss H 1996 Diamond and Related Materials 5 845

    [8]

    Bernard M, Deneuville A, Ortega L, Ayadi K, Muret P 2004 Diamond and Related Materials 13 287

    [9]

    Tan B S, Ma Z B, Shen W L, Wu Z H 2010 High Power Laser and Particle Beams 22 1887 (in Chinese) [谭必松, 马志斌, 沈武林, 吴振辉 2010 强激光与粒子束 22 1887]

    [10]

    Silva F, Sussmann R S, Bénédic F, Gicquel A 2003 Diamond and Related Materials 12 369

    [11]

    Zheng X F, Ma Z B, Zhang L, Wang J H 2007 Diamond and Related Materials 16 1500

    [12]

    Wu J, Ma Z B, Shen W L 2012 High Power Laser and Particle Beams 24 2459 (in Chinese) [吴俊, 马志斌, 沈武林 2012 强激光与粒子束 24 2459]

    [13]

    Kiyohara S, Miyamoto I 1996 Nanotechnology 7 270

    [14]

    Shen W L, Ma Z B, Tan B S, Wu J, Wang J H 2011 Acta Phys. Sin. 60 105204 (in Chinese) [沈武林, 马志斌, 谭必松, 吴俊, 汪建华 2011 物理学报 60 105204]

    [15]

    Li M J, L X Y, Sun B R, Li C Y, Li B, Jin Z S 2007 New Carbon Materials 22 183 (in Chinese) [李明吉, 吕宪义, 孙宝茹, 李春燕, 李博, 金曾孙 2007 新型碳材料 22 183]

    [16]

    Ahedo E 1997 Physics of Plasmas 4 4419

    [17]

    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (London: Institute of Physics Publishing) p98

    [18]

    Zou X, Liu H P, Gu X E 2008 Acta Phys. Sin. 57 5111 (in Chinese) [邹秀, 刘惠平, 谷秀娥 2008 物理学报 57 5111]

    [19]

    Devaux S, Manfredi G 2008 Plasma Physics and Controlled Fusion 50 025009

    [20]

    Show Y, Matsukawa T, Ito H, Iwase M, Izumi T 2000 Thin Solid Films 377-378 214

    [21]

    Boettger E, Bluhm A, Jiang X, Schäfer L, Klages C P 2008 Journal of Applied Physic 77 6332

    [22]

    Xu N S, Tzeng Y, Latham R V 1993 Journal of Phys. D: Applied Physics 26 1776

    [23]

    Geis M W, Twichell J C, Lyszczarz T M 1996 Journal of Vacuum Science and Technology B 14 2060

    [24]

    Li J J, Wu H H, Long B Y, L X Y, Hu C Q, Jin Z S 2005 Acta Phys. Sin. 54 1447 (in Chinese) [李俊杰, 吴汉华, 龙北玉, 吕宪义, 胡超权, 金曾孙 2005 物理学报 54 1447]

    [25]

    Masuzawa T, SatoY, Kudo Y, Saito I, Yamada T, Koh A T T, Chua D H C, Yoshino T, Chun W J, Yamasaki S, Okano K 2011 Journal of Vacuum Science and Technology B 29 02B119

  • [1] 李俊杰, 吴汉华, 龙北玉, 吕宪义, 胡超权, 金曾孙. N离子注入对金刚石膜场发射特性的影响. 物理学报, 2005, 54(3): 1447-1451. doi: 10.7498/aps.54.1447
    [2] 刘 畅, 刘存业. CVD金刚石膜的结构分析. 物理学报, 2003, 52(6): 1479-1483. doi: 10.7498/aps.52.1479
    [3] 王万录, 廖克俊, 王蜀霞, 方亮, 孔春阳, 马勇. p型半导体金刚石膜的磁阻效应. 物理学报, 2001, 50(8): 1616-1622. doi: 10.7498/aps.50.1616
    [4] 刘聪, 汪建华, 翁俊. 高质量高取向(100)面金刚石膜的可控性生长. 物理学报, 2015, 64(2): 028101. doi: 10.7498/aps.64.028101
    [5] 苏青峰, 刘长柱, 王林军, 夏义本. 不同织构CVD金刚石膜的Hall效应特性. 物理学报, 2015, 64(11): 117301. doi: 10.7498/aps.64.117301
    [6] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [7] 王必本, 王万录, 廖克俊, 肖金龙, 方亮. 离子的轰击对Si衬底上金刚石核附着力的影响. 物理学报, 2001, 50(2): 251-255. doi: 10.7498/aps.50.251
    [8] 郑树琳, 宋亦旭, 孙晓民. 基于三维元胞模型的刻蚀工艺表面演化方法. 物理学报, 2013, 62(10): 108201. doi: 10.7498/aps.62.108201
    [9] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [10] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [11] 蒋 乐, 杨德仁, 余学功, 马向阳, 徐 进, 阙端麟. 直拉硅中氮在高温退火过程中对氧沉淀的影响. 物理学报, 2003, 52(8): 2000-2004. doi: 10.7498/aps.52.2000
    [12] Bogaerts A., 吕晓丹, 赵成利, 贺平逆, 宁建平, 秦尤敏, 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
    [13] 吕晓丹, 赵成利, 宁建平, 秦尤敏, 贺平逆, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [14] 戴隆贵, 禤铭东, 丁芃, 贾海强, 周均铭, 陈弘. 一种简单高效的制备硅纳米孔阵结构的方法. 物理学报, 2013, 62(15): 156104. doi: 10.7498/aps.62.156104
    [15] 弓志娜, 云峰, 丁文, 张烨, 郭茂峰, 刘硕, 黄亚平, 刘浩, 王帅, 冯仑刚, 王江腾. 光致电化学法提高垂直结构发光二极管出光效率的研究. 物理学报, 2015, 64(1): 018501. doi: 10.7498/aps.64.018501
    [16] 贾晓鹏, 梁中翥, 梁静秋, 李桂菊, 郑娜. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [17] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能. 物理学报, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [18] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [19] 赵栋才, 任 妮, 马占吉, 邱家稳, 肖更竭, 武生虎. 掺硅类金刚石膜的制备与力学性能研究. 物理学报, 2008, 57(3): 1935-1940. doi: 10.7498/aps.57.1935
    [20] 叶 凡, 谢二庆, 李瑞山, 林洪峰, 张 军, 贺德衍. 类金刚石和碳氮薄膜的电化学沉积及其场发射性能研究. 物理学报, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1093
  • PDF下载量:  561
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-25
  • 修回日期:  2012-11-07
  • 刊出日期:  2013-04-05

CVD金刚石中的氮对等离子体刻蚀的影响

  • 1. 武汉工程大学材料科学与工程学院, 湖北省等离子体化学与新材料重点实验室, 武汉 430073
    基金项目: 

    国家自然科学基金 (批准号: 10875093) 资助的课题.

摘要: 采用非对称磁镜场电子回旋共振等离子体分别对沉积过程中掺氮和未掺氮的化学气相沉积金刚石膜进行了刻蚀研究, 结果表明: 掺氮制备的金刚石膜的刻蚀主要集中在晶棱处, 经过4h刻蚀后其表面粗糙度由刻蚀前的4.761 μm下降至3.701 μm, 刻蚀对金刚石膜的表面粗糙度的影响较小; 而未掺氮制备的金刚石膜的刻蚀表现为晶面的均匀刻蚀, 晶粒坍塌,刻蚀4h后其表面粗糙度由刻蚀前的3.061 μm下降至1.083 μm. 刻蚀导致表面粗糙度显著降低. 上述差别的主要原因在于金刚石膜沉积过程中掺氮导致氮缺陷在金刚石晶棱处富集, 晶棱处电子发射加强, 引导离子向晶棱运动并产生刻蚀, 从而加剧晶棱的刻蚀. 而未掺氮金刚石膜,其缺陷相对较少且分布较均匀 ,刻蚀时整体呈现为 (111) 晶面被均匀刻蚀继而晶粒坍塌的现象.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回