搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对β胡萝卜素结构有序的影响

曲冠男 李硕 孙美娇 徐胜楠 刘煜 孙成林 门志伟 里佐威

温度对β胡萝卜素结构有序的影响

曲冠男, 李硕, 孙美娇, 徐胜楠, 刘煜, 孙成林, 门志伟, 里佐威
PDF
导出引用
  • 本文测量了全反式β胡萝卜素在二甲基亚砜中81–25 ℃ 范围的紫外–可见吸收和拉曼光谱. 结果表明, 随温度降低, 紫外–可见吸收光谱、拉曼光谱都发生红移, 拉曼光谱线型变窄, 散射截面增加这些现象的发生是由于随温度降低, β胡萝卜素分子的热无序降低、分子结构有序性增加、π电子离域扩展, 有效共轭长度增加, 分子的电子能隙变窄. 另外, 随着温度的降低, 溶剂密度增加, 由Lorentz-Lorenz 关系得知相伴的折射率增加, 从而引起吸收光谱的红移. CC键键长增加, 使CC 键拉曼光谱红移; 振动弛豫时间变长, 各CC 键之间的键长差减小, 线宽变窄; 但由于声子, π电子耦合加强使CC键拉曼线型不对称程度增加, 低频端"肩"扩展, CC键的弱阻尼相干振动增加, 使拉曼散射截面增加.
    • 基金项目: 国家自然科学基金(批准号: 10974067)、新世纪优秀人才支持计划(批准号: NCET-11-0201) 和吉林省创新团队(批准号: 20121806)资助的课题.
    [1]

    Mckenzie J L, Waid M C, Shi R Y, Webser T J 2004 Biomaterials 25 1309

    [2]

    Choudhury K R, Sahoo Y, Prasad P N 2005 Advanced materials 17 2877

    [3]

    Ryskulov A A, Liopo V A, Ovchinnikov E V 2011 Journal of friction and wear 32 30

    [4]

    Andreeva A, Apostolova I, Velitchkova M 2011 Spectrochimica Acta Part A 78 1261

    [5]

    Ostroumov E E, Muller M G, Reus M, Holzwarth A R 2011 J. Phys. Chem. A 115 3698

    [6]

    Britton G, Jensen S L, Pfander H 2004 Carotenoid Handbook Birkhauser Verlag, AG Basel, 2004 p550

    [7]

    Brackmann C, Bengtsson A, Alminger M L, Svanberg U, Enejder A 2011 J. Raman Spectrosc 42 586

    [8]

    Qu G N, Li D F, Li Z L, OuYang S L, Li Z W, Gao S Q, Zhou M, Wang W W, Yang J G 2010 Acta Phys. Sin. 59 3168 (in Chinese) [曲冠男, 李东飞, 李占龙, 欧阳顺利, 里佐威, 高淑琴, 周密, 王微微, 杨建戈 2010 物理学报 59 3168]

    [9]

    Li Z L, OuYang S L, Cao B, Zhou M, Li Z W, Gao S Q 2009 Acta Phys. Sin. 58 6908 (in Chinese) [李占龙, 欧阳顺利, 曹彪, 周密, 里佐威, 高淑琴 2009 物理学报 58 6908]

    [10]

    Qu G N, OuYang S L, Sun C L, Wang W W, Li Z W, Men Z W 2011 Chin. Phys. B 20 0378031

    [11]

    OuYang S L, Sun C L, Zhou M, Li Z L, Men Z W, Li D F, Li Z W, Gao S Q, Lu G H 2010 J. Raman Spectrosc 41 1650

    [12]

    Hagler T W, Pakbaz K, Voss K F, Heeger A J 1991 Phys. Rev. B 44 8652

    [13]

    Frank H A, Young A J, Britton G R, Cogdell J 1999 Advances in Photosynthesis Kluwer Academic Publishers, Dordrecht 1999 p191

    [14]

    Niedzwiedzki D M, Enriquez M M, LaFountain A M, Frank H A 2010 Chem. Phys. 373 80

    [15]

    Gierschner J, Mack H G, Ler L, Oelkrug D 2002 J. Chem. Phys. 116 8596

    [16]

    Renge I, van Grondelle R, Dekker J P 1996 J. Photochem. Photobiol A: Chemistry 96 109

    [17]

    Fujimatsu H, Ideta Y, Nakamura H, Usami H, Ogasawara S 2001 Polym. J. 33 543

    [18]

    Nagae H, Kuki M, Cogdell R J, Koyama Y 1994 J. Chem. Phys. 101 6750

    [19]

    Bicknelld R T M, Davies D B, Lawrence K G 1982 J. Chem. SOC. Faraday Trans. I 78 1595

    [20]

    Noguchi T, Hayashi H, Tasumi M, Atkinson G H 1991 J. Chem. Phys. 95 3167

    [21]

    Kolodziejski M, Waliszewska G, Abramczyk H 1996 Chem. Phys. 213 341

    [22]

    Abramczyk H, Kolodziejski M, Waliszewska G 1999 J. Mol. Liq. 79 223

    [23]

    Merilin J C 1985 Pure. & Appl. Chem. 57 85

    [24]

    Paraschuk D Y, Arnautov S A, Shcgegolikhin A N, Kobryanskii V M 1996 TETP Lett. 64 658

    [25]

    Tori H, Tasumi M 1990 J. Phys. Chem. 94 227

    [26]

    Dudik J M, Johnson C R, Asher S A 1985 J. Chem. Phys. 82 1732

    [27]

    Biswas N, Umapathy S 1998 Appl. Spectrosc 52 496

    [28]

    Perry S, Zerda T W, Jonas J 1985 J. Chem. Phys. 75 4214

  • [1]

    Mckenzie J L, Waid M C, Shi R Y, Webser T J 2004 Biomaterials 25 1309

    [2]

    Choudhury K R, Sahoo Y, Prasad P N 2005 Advanced materials 17 2877

    [3]

    Ryskulov A A, Liopo V A, Ovchinnikov E V 2011 Journal of friction and wear 32 30

    [4]

    Andreeva A, Apostolova I, Velitchkova M 2011 Spectrochimica Acta Part A 78 1261

    [5]

    Ostroumov E E, Muller M G, Reus M, Holzwarth A R 2011 J. Phys. Chem. A 115 3698

    [6]

    Britton G, Jensen S L, Pfander H 2004 Carotenoid Handbook Birkhauser Verlag, AG Basel, 2004 p550

    [7]

    Brackmann C, Bengtsson A, Alminger M L, Svanberg U, Enejder A 2011 J. Raman Spectrosc 42 586

    [8]

    Qu G N, Li D F, Li Z L, OuYang S L, Li Z W, Gao S Q, Zhou M, Wang W W, Yang J G 2010 Acta Phys. Sin. 59 3168 (in Chinese) [曲冠男, 李东飞, 李占龙, 欧阳顺利, 里佐威, 高淑琴, 周密, 王微微, 杨建戈 2010 物理学报 59 3168]

    [9]

    Li Z L, OuYang S L, Cao B, Zhou M, Li Z W, Gao S Q 2009 Acta Phys. Sin. 58 6908 (in Chinese) [李占龙, 欧阳顺利, 曹彪, 周密, 里佐威, 高淑琴 2009 物理学报 58 6908]

    [10]

    Qu G N, OuYang S L, Sun C L, Wang W W, Li Z W, Men Z W 2011 Chin. Phys. B 20 0378031

    [11]

    OuYang S L, Sun C L, Zhou M, Li Z L, Men Z W, Li D F, Li Z W, Gao S Q, Lu G H 2010 J. Raman Spectrosc 41 1650

    [12]

    Hagler T W, Pakbaz K, Voss K F, Heeger A J 1991 Phys. Rev. B 44 8652

    [13]

    Frank H A, Young A J, Britton G R, Cogdell J 1999 Advances in Photosynthesis Kluwer Academic Publishers, Dordrecht 1999 p191

    [14]

    Niedzwiedzki D M, Enriquez M M, LaFountain A M, Frank H A 2010 Chem. Phys. 373 80

    [15]

    Gierschner J, Mack H G, Ler L, Oelkrug D 2002 J. Chem. Phys. 116 8596

    [16]

    Renge I, van Grondelle R, Dekker J P 1996 J. Photochem. Photobiol A: Chemistry 96 109

    [17]

    Fujimatsu H, Ideta Y, Nakamura H, Usami H, Ogasawara S 2001 Polym. J. 33 543

    [18]

    Nagae H, Kuki M, Cogdell R J, Koyama Y 1994 J. Chem. Phys. 101 6750

    [19]

    Bicknelld R T M, Davies D B, Lawrence K G 1982 J. Chem. SOC. Faraday Trans. I 78 1595

    [20]

    Noguchi T, Hayashi H, Tasumi M, Atkinson G H 1991 J. Chem. Phys. 95 3167

    [21]

    Kolodziejski M, Waliszewska G, Abramczyk H 1996 Chem. Phys. 213 341

    [22]

    Abramczyk H, Kolodziejski M, Waliszewska G 1999 J. Mol. Liq. 79 223

    [23]

    Merilin J C 1985 Pure. & Appl. Chem. 57 85

    [24]

    Paraschuk D Y, Arnautov S A, Shcgegolikhin A N, Kobryanskii V M 1996 TETP Lett. 64 658

    [25]

    Tori H, Tasumi M 1990 J. Phys. Chem. 94 227

    [26]

    Dudik J M, Johnson C R, Asher S A 1985 J. Chem. Phys. 82 1732

    [27]

    Biswas N, Umapathy S 1998 Appl. Spectrosc 52 496

    [28]

    Perry S, Zerda T W, Jonas J 1985 J. Chem. Phys. 75 4214

  • [1] 曲冠男, 里佐威, 李东飞, 李占龙, 欧阳顺利, 高淑琴, 周密, 门志伟, 王微微, 杨健戈. 溶剂密度对β胡萝卜素拉曼散射截面的影响. 物理学报, 2010, 59(5): 3168-3172. doi: 10.7498/aps.59.3168
    [2] 吴咏玲, 刘天元, 孙成林, 曲冠男, 里佐威. 分子极性对类胡萝卜素共振拉曼光谱的影响. 物理学报, 2013, 62(3): 037801. doi: 10.7498/aps.62.037801
    [3] 李占龙, 欧阳顺利, 曹彪, 周密, 里佐威, 高淑琴. 溶剂折射率对β-胡萝卜素拉曼散射截面的影响. 物理学报, 2009, 58(10): 6908-6912. doi: 10.7498/aps.58.6908
    [4] 门志伟, 里佐威, 李占龙, 周密, 孙成林, 何丽桥. 分子间费米共振增强二元溶液体系的受激拉曼散射研究. 物理学报, 2011, 60(9): 094217. doi: 10.7498/aps.60.094217
    [5] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [6] 刘向绯, 任 峰, 蒋昌忠, 付 强. Ag离子注入非晶SiO2的光学吸收、拉曼谱和透射电镜研究. 物理学报, 2005, 54(10): 4633-4637. doi: 10.7498/aps.54.4633
    [7] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [8] 郜小勇, 李 瑞, 陈永生, 卢景霄, 刘 萍, 冯团辉, 王红娟, 杨仕娥. 微晶硅薄膜的结构及光学性质的研究. 物理学报, 2006, 55(1): 98-101. doi: 10.7498/aps.55.98
    [9] 张振铎, 侯清玉, 李聪, 赵春旺. Nd高掺杂锐钛矿相TiO2电子结构和吸收光谱的第一原理研究. 物理学报, 2012, 61(11): 117102. doi: 10.7498/aps.61.117102
    [10] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [11] 张 勇, 唐超群, 戴 君. 锐钛矿TiO2及其掺Fe所导致的红移现象研究:赝势计算和紫外光谱实验. 物理学报, 2005, 54(1): 323-327. doi: 10.7498/aps.54.323
    [12] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [13] 房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟. 类胡萝卜素的分子光谱研究. 物理学报, 2012, 61(15): 153301. doi: 10.7498/aps.61.153301
    [14] 徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威. 溶剂效应对β胡萝卜素分子电子振动耦合的影响. 物理学报, 2014, 63(16): 167801. doi: 10.7498/aps.63.167801
    [15] 王 笑, 刘 丹, 白永强, 张朝晖, 朱 星, 潘安练, 邹炳锁. 近场光学显微镜研究CdS0.65Se0.35纳米带空间分辨光致荧光谱. 物理学报, 2007, 56(11): 6352-6357. doi: 10.7498/aps.56.6352
    [16] 陈 涛, 张 婷, 张建炜, 王光昶, 郑志坚, 谷渝秋, 温贤伦. 超热电子输运背向光辐射的实验研究. 物理学报, 2008, 57(8): 5117-5122. doi: 10.7498/aps.57.5117
    [17] 李世帅, 冯秀鹏, 黄金昭, 刘春彦, 张仲, 陶冶微. Zn1-x-yNaxCoyO薄膜的脉冲激光沉积制备及表征. 物理学报, 2011, 60(5): 057105. doi: 10.7498/aps.60.057105
    [18] 杨少鹏, 李娜, 李光, 史江波, 李晓苇, 傅广生. 混合溶剂对P3HT:PCBM基太阳能电池的影响. 物理学报, 2013, 62(1): 014702. doi: 10.7498/aps.62.014702
    [19] 赵静, 余辉龙, 刘伟伟, 郭婧. 砷化镓光电阴极光谱响应与吸收率关系分析. 物理学报, 2017, 66(22): 227801. doi: 10.7498/aps.66.227801
    [20] 王晓东, 牛智川, 封松林, 刘会赟. 不同组分InxGa1-xAs(0≤x≤0.3)覆盖层对自组织InAs量子点的影响. 物理学报, 2000, 49(11): 2230-2234. doi: 10.7498/aps.49.2230
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1500
  • PDF下载量:  679
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-07
  • 修回日期:  2012-11-27
  • 刊出日期:  2013-04-05

温度对β胡萝卜素结构有序的影响

  • 1. 吉林大学超硬材料国家重点实验室, 物理学院, 长春 130012;
  • 2. 吉林大学第二医院, 长春 130041
    基金项目: 

    国家自然科学基金(批准号: 10974067)、新世纪优秀人才支持计划(批准号: NCET-11-0201) 和吉林省创新团队(批准号: 20121806)资助的课题.

摘要: 本文测量了全反式β胡萝卜素在二甲基亚砜中81–25 ℃ 范围的紫外–可见吸收和拉曼光谱. 结果表明, 随温度降低, 紫外–可见吸收光谱、拉曼光谱都发生红移, 拉曼光谱线型变窄, 散射截面增加这些现象的发生是由于随温度降低, β胡萝卜素分子的热无序降低、分子结构有序性增加、π电子离域扩展, 有效共轭长度增加, 分子的电子能隙变窄. 另外, 随着温度的降低, 溶剂密度增加, 由Lorentz-Lorenz 关系得知相伴的折射率增加, 从而引起吸收光谱的红移. CC键键长增加, 使CC 键拉曼光谱红移; 振动弛豫时间变长, 各CC 键之间的键长差减小, 线宽变窄; 但由于声子, π电子耦合加强使CC键拉曼线型不对称程度增加, 低频端"肩"扩展, CC键的弱阻尼相干振动增加, 使拉曼散射截面增加.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回