搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性

马媛 季小玲

倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性

马媛, 季小玲
PDF
导出引用
  • 本文研究了大气湍流和探测光空间相干性对倾斜离轴激光束通过猫眼光学 镜头反射光光强特性的影响. 研究表明: 由于光阑效应以及光束倾斜或离轴, 反射光光强出现振荡和非对称分布现象. 大气湍流不会改变其非对称性, 但湍流中其光强不再振荡. 当猫眼光学镜头存在微弱正离焦δmax情况下, 轴上光强可达到最大值. 猫眼光学镜头焦距越大, 所需δmax越大. 但是, 大气湍流和探测光相干性好坏都不会改变所需δmax值. 在大气湍流中传输距离足够远时, 反射光强会成为离轴类高斯分布. 随着传输距离的增大, 相干性越差的探测光的反射光束扩展可以更小, 这与部分相干光自由空间传输规律完全不同. 探测光相干性越好, 其反射光强受湍流的影响越大, 但差异不大. 本文所得结果对激光主动探测的应用具有意义.
    • 基金项目: 国家自然科学基金(批准号:61178070)和四川高校科研创新团队建设计划(批准号:12TD008)资助的课题.
    [1]

    Biermann M L, Rabinovich W S, Mahon R, Gilbreah G C 2002 Optical Engineering 41 1655

    [2]

    Xu Z G, Zhang S L, Li Y, Du W H 2005 Opt. Express 13 5565

    [3]

    Lin Y B, Zhang G X, Li Z 2003 Measurement Science and Technology 14 N36

    [4]

    Dimakov S A, Klimentev S L, Khloponina L V 2002 J. of Optical Technology 69 536

    [5]

    Ren D M, Lawton K M, Miller J A 2007 Precision Engineering 31 68

    [6]

    Rabionovich W S, Mahon R, Goetz P G, Swingen L, Murphy J, Ferraro M, Burris H R, Suite M, Moore C L, Gilbreath G C, Binari S, Klotzkin D 2007 Optical Engineering 46 104001

    [7]

    Goetz P G, Rabinovich W S, Binari S C, Mittereder J A 2006 IEEE Photonics Technology Letters 18 2278

    [8]

    Rabinovich W S, Mahon R, Goetz P G, Waluschka E, Katzer D S, Gilbreath G C 2003 IEEE Photonics Technology Letters 15 461

    [9]

    Lecocq C, Deshors G, Lado-Bordowsky O, Meyzonnette J L 2003 Proceedings of SPIE 5086 280

    [10]

    Sun H Y, Zhao Y Z, Tang L M 2007 Proc. 7th International Symposium on Test and Measurement 4 3024

    [11]

    Zhao Y Z, Sun H Y, Song F H, Gu S L 2010 Laser Optoelectronics Progress 47 102802 (in Chinese) [赵延仲, 孙华燕, 宋丰华, 谷锁林 2010 激光与光电子学进展 47 102802]

    [12]

    Zhao Y Z, Sun H Y, Song F H, Tang L M, Wu W W, Zhang X, Guo H C 2008 Acta Physica Sinica 57 2284 (in Chinese) [赵延仲, 孙华燕, 宋丰华, 唐黎明, 吴伟伟, 张曦, 郭惠超 2008 物理学报 57 2284]

    [13]

    Zhao Y Z, Sun H Y, Song F H, Dai D D 2009 Acta Optica Sinica 29 2552 (in Chinese) [赵延仲, 孙华燕, 宋丰华, 戴得德 2009 光学学报 29 2552]

    [14]

    Zhao Y Z, Sun H Y, Yu X Q, Fan M S 2010 Chin. Phys. Lett. 27 034101

    [15]

    Zhao Y Z, Sun H Y, Song F H, Dai D D 2010 Optik 121 2198

    [16]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media 2nd ed. (SPIE, Bellingham)

    [17]

    Ricklin J C, Davidson F M 2002 J. Opt. Soc. Am. A 19 1794

    [18]

    Cai Y J, He S L 2006 Appl. Phys. Lett. 89 041117

    [19]

    Dan Y Q, Zhang B 2009 Opt. Lett. 34 563

    [20]

    Luo B, Wu G H, Guo H, Yu S 2010 Opt. Lett. 35 715

    [21]

    Mao H D, Zhao D M 2010 Opt. Express 18 1741

    [22]

    Zhou G Q, Cai Y J, Chu X X 2012 Opt. Express 20 9897

    [23]

    Ji X L, Li X Q, Ji G M 2011 New J. Phys. 13 103006

    [24]

    Tao R M, Si L, Ma Y X, Zhou P, Liu Z J 2012 Appl. Opt. 51 5609

    [25]

    Shao X L, Ji X L 2012 Acta Phys. Sin. 61 164209(in Chinese) [邵晓利, 季小玲 2012 物理学报 61 164209]

    [26]

    Chu X X 2011 Chin. Phys. B 20 014207

    [27]

    Pu J X, Wang T, Lin H C, Li C L 2010 Chin. Phys. B 19 089201

    [28]

    Zhao Y Z, Sun H Y, Song F H 2011 Chin. Phys. B 20 044201

    [29]

    Wang S C H, Plonus M A 1979 J. Opt. Soc. Am. 69 1297

    [30]

    Wen J J, Breazeale M A 1988 J. Acoust. Soc. Am. 83 1752

  • [1]

    Biermann M L, Rabinovich W S, Mahon R, Gilbreah G C 2002 Optical Engineering 41 1655

    [2]

    Xu Z G, Zhang S L, Li Y, Du W H 2005 Opt. Express 13 5565

    [3]

    Lin Y B, Zhang G X, Li Z 2003 Measurement Science and Technology 14 N36

    [4]

    Dimakov S A, Klimentev S L, Khloponina L V 2002 J. of Optical Technology 69 536

    [5]

    Ren D M, Lawton K M, Miller J A 2007 Precision Engineering 31 68

    [6]

    Rabionovich W S, Mahon R, Goetz P G, Swingen L, Murphy J, Ferraro M, Burris H R, Suite M, Moore C L, Gilbreath G C, Binari S, Klotzkin D 2007 Optical Engineering 46 104001

    [7]

    Goetz P G, Rabinovich W S, Binari S C, Mittereder J A 2006 IEEE Photonics Technology Letters 18 2278

    [8]

    Rabinovich W S, Mahon R, Goetz P G, Waluschka E, Katzer D S, Gilbreath G C 2003 IEEE Photonics Technology Letters 15 461

    [9]

    Lecocq C, Deshors G, Lado-Bordowsky O, Meyzonnette J L 2003 Proceedings of SPIE 5086 280

    [10]

    Sun H Y, Zhao Y Z, Tang L M 2007 Proc. 7th International Symposium on Test and Measurement 4 3024

    [11]

    Zhao Y Z, Sun H Y, Song F H, Gu S L 2010 Laser Optoelectronics Progress 47 102802 (in Chinese) [赵延仲, 孙华燕, 宋丰华, 谷锁林 2010 激光与光电子学进展 47 102802]

    [12]

    Zhao Y Z, Sun H Y, Song F H, Tang L M, Wu W W, Zhang X, Guo H C 2008 Acta Physica Sinica 57 2284 (in Chinese) [赵延仲, 孙华燕, 宋丰华, 唐黎明, 吴伟伟, 张曦, 郭惠超 2008 物理学报 57 2284]

    [13]

    Zhao Y Z, Sun H Y, Song F H, Dai D D 2009 Acta Optica Sinica 29 2552 (in Chinese) [赵延仲, 孙华燕, 宋丰华, 戴得德 2009 光学学报 29 2552]

    [14]

    Zhao Y Z, Sun H Y, Yu X Q, Fan M S 2010 Chin. Phys. Lett. 27 034101

    [15]

    Zhao Y Z, Sun H Y, Song F H, Dai D D 2010 Optik 121 2198

    [16]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media 2nd ed. (SPIE, Bellingham)

    [17]

    Ricklin J C, Davidson F M 2002 J. Opt. Soc. Am. A 19 1794

    [18]

    Cai Y J, He S L 2006 Appl. Phys. Lett. 89 041117

    [19]

    Dan Y Q, Zhang B 2009 Opt. Lett. 34 563

    [20]

    Luo B, Wu G H, Guo H, Yu S 2010 Opt. Lett. 35 715

    [21]

    Mao H D, Zhao D M 2010 Opt. Express 18 1741

    [22]

    Zhou G Q, Cai Y J, Chu X X 2012 Opt. Express 20 9897

    [23]

    Ji X L, Li X Q, Ji G M 2011 New J. Phys. 13 103006

    [24]

    Tao R M, Si L, Ma Y X, Zhou P, Liu Z J 2012 Appl. Opt. 51 5609

    [25]

    Shao X L, Ji X L 2012 Acta Phys. Sin. 61 164209(in Chinese) [邵晓利, 季小玲 2012 物理学报 61 164209]

    [26]

    Chu X X 2011 Chin. Phys. B 20 014207

    [27]

    Pu J X, Wang T, Lin H C, Li C L 2010 Chin. Phys. B 19 089201

    [28]

    Zhao Y Z, Sun H Y, Song F H 2011 Chin. Phys. B 20 044201

    [29]

    Wang S C H, Plonus M A 1979 J. Opt. Soc. Am. 69 1297

    [30]

    Wen J J, Breazeale M A 1988 J. Acoust. Soc. Am. 83 1752

  • [1] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [2] 赵延仲, 孙华燕, 宋丰华, 唐黎明, 吴伟伟, 张 曦, 郭惠超. 激光辐照猫眼光学镜头时的反射特性机理研究. 物理学报, 2008, 57(4): 2284-2294. doi: 10.7498/aps.57.2284
    [3] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [4] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [5] 季小玲, 肖 希, 吕百达. 大气湍流对多色部分空间相干光传输特性的影响. 物理学报, 2004, 53(11): 3996-4001. doi: 10.7498/aps.53.3996
    [6] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [7] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [8] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [9] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [10] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [11] 刘李辉, 吕炜煜, 杨超, 麦灿基, 陈德鹏. 部分相干双曲余弦厄米高斯光束在非Kolmogorov大气湍流中的传输特性. 物理学报, 2015, 64(3): 034208. doi: 10.7498/aps.64.034208
    [12] 仓吉, 张逸新. 斜程大气中聚焦J0相关部分相干光束的传输特性. 物理学报, 2009, 58(4): 2444-2450. doi: 10.7498/aps.58.2444
    [13] 陈京元, 陈式刚, 王光瑞. 间歇性大气湍流中光传播问题的近Gauss极限分析. 物理学报, 2005, 54(7): 3123-3131. doi: 10.7498/aps.54.3123
    [14] 季小玲. 湍流对部分相干双曲余弦高斯光束的瑞利区间的影响. 物理学报, 2011, 60(6): 064207. doi: 10.7498/aps.60.064207
    [15] 李明飞, 阎璐, 杨然, 寇军, 刘院省. 日光强度涨落自关联消湍流成像. 物理学报, 2019, 68(9): 094204. doi: 10.7498/aps.68.20182181
    [16] 李建龙, 吕百达. 基于自适应遗传算法部分相干光整形位相板的优化设计. 物理学报, 2008, 57(5): 3006-3010. doi: 10.7498/aps.57.3006
    [17] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响. 物理学报, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [18] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄. 非均匀部分相干光束在自由空间中的传输. 物理学报, 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [19] 郑建洲, 于清旭, 关寿华, 董斌, 曹晓君, 芦永军, 吴云峰. 利用部分相干光和同心角偏差透镜列阵实现二维靶面均匀辐照. 物理学报, 2012, 61(15): 154205. doi: 10.7498/aps.61.154205
    [20] 唐远河, 解光勇, 刘汉臣, 邵建斌, 马 琦, 刘会平, 宁 辉, 杨 彧, 严成海. 基于粒子成像测速技术的水中气泡界面的光学性质研究. 物理学报, 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1158
  • PDF下载量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-05
  • 修回日期:  2012-11-29
  • 刊出日期:  2013-05-05

倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性

  • 1. 四川师范大学物理学院, 成都 610068
    基金项目: 

    国家自然科学基金(批准号:61178070)和四川高校科研创新团队建设计划(批准号:12TD008)资助的课题.

摘要: 本文研究了大气湍流和探测光空间相干性对倾斜离轴激光束通过猫眼光学 镜头反射光光强特性的影响. 研究表明: 由于光阑效应以及光束倾斜或离轴, 反射光光强出现振荡和非对称分布现象. 大气湍流不会改变其非对称性, 但湍流中其光强不再振荡. 当猫眼光学镜头存在微弱正离焦δmax情况下, 轴上光强可达到最大值. 猫眼光学镜头焦距越大, 所需δmax越大. 但是, 大气湍流和探测光相干性好坏都不会改变所需δmax值. 在大气湍流中传输距离足够远时, 反射光强会成为离轴类高斯分布. 随着传输距离的增大, 相干性越差的探测光的反射光束扩展可以更小, 这与部分相干光自由空间传输规律完全不同. 探测光相干性越好, 其反射光强受湍流的影响越大, 但差异不大. 本文所得结果对激光主动探测的应用具有意义.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回