-
本文研究了不同磁场环境下一维Heisenberg XXZ自旋链中两量子比特的热量子失协特性. 在四种不同的磁场环境下: 1) B1=B2=0 (无磁场); 2) B1≠0, B2=0 (磁场只作用于其中一个量子比特); 3) B1=B2 (均匀磁场); 4) B1=-B2 (非均匀磁场), 对分别作用在每个量子比特上的磁场B1和B2对其量子关联的影响作了详细的讨论, 且数值计算和比较了其量子失协和量子纠缠的异同. 结果显示: 在有限温度下, 量子失协相比于量子纠缠更普遍, 且非均匀磁场相比于均匀磁场对量子失协和量子纠缠更有用, 更有利于量子通讯和量子信息处理过程.
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p58
[2] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H, Sicincenzo D P 2000 Nature 404 247
[5] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[6] Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502
[7] Lanyon B P, Barbieri M, Almedia M P, White A G 2008 Phys. Rev. Lett. 101 200501
[8] Horodecki M, Horodecki P, Horodecki R, Oppenheim J, Sen A, Sen U, Synak-Radtke B 2005 Phys. Rev. A 71 062307
[9] Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003
[10] Rodriguez-Rosario C A, Modi K, Kuah A, Shaji A, Sudarshan E C G 2008 J. Phys. A: Math. Theor 41 205301
[11] Shabani A, Lidar D A 2009 Phys. Rev. Lett. 102 100402
[12] Datta A, Shaji S, Caves C M 2008 Phys. Rev. Lett. 100 050502
[13] Werlang T, Souza S, Fanchini F F, Villas-Boas C J 2009 Phys. Rev. A 80 024103
[14] Ding B F, Wang X Y, Liu J F, Yan L, Zhao H P 2011 Chin. Phys. Lett. 28 104216
[15] Ren J, Wu Y Z, Zhu S Q 2012 Chin. Phys. Lett. 29 060305
[16] Chakrabarty I, Agrawal P, Pati A K 2011 Eur. Phys. J. D 65 605
[17] Dhar H S, Ghosh R, Sen (De) A, Sen U 2012 EuroPhys. Lett. 98 30013
[18] Hassan1 A S M, Lari B, Joag P S 2012 Phys. Rev. A 85 024302
[19] Dillenschneider R 2008 Phys. Rev. B 78 224413
[20] Sun Z, Lu X M, Song L J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215504
[21] Wang L C, Shen J, Yi X X 2011 Chin. Phys. B 20 050306
[22] Sarandy M S 2009 Phys. Rev. A 80 022108
[23] Werlang T, Trippe C, Ribeiro G A P, Rigolin G 2010 Phys. Rev. Lett. 105 095702
[24] Guo J L, Mi Y J, Zhang J, Song H S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 065504
[25] Guo J L, Li Z D, Sun Y B 2011 Opt. Commun. 284 1461
[26] Werlang T, Rigolin G 2010 Phys. Rev. A 81 044101
[27] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[28] Groisman B, Popescu S, Winter A 2005 Phys. Rev. A 72 032317
-
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p58
[2] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H, Sicincenzo D P 2000 Nature 404 247
[5] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[6] Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502
[7] Lanyon B P, Barbieri M, Almedia M P, White A G 2008 Phys. Rev. Lett. 101 200501
[8] Horodecki M, Horodecki P, Horodecki R, Oppenheim J, Sen A, Sen U, Synak-Radtke B 2005 Phys. Rev. A 71 062307
[9] Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003
[10] Rodriguez-Rosario C A, Modi K, Kuah A, Shaji A, Sudarshan E C G 2008 J. Phys. A: Math. Theor 41 205301
[11] Shabani A, Lidar D A 2009 Phys. Rev. Lett. 102 100402
[12] Datta A, Shaji S, Caves C M 2008 Phys. Rev. Lett. 100 050502
[13] Werlang T, Souza S, Fanchini F F, Villas-Boas C J 2009 Phys. Rev. A 80 024103
[14] Ding B F, Wang X Y, Liu J F, Yan L, Zhao H P 2011 Chin. Phys. Lett. 28 104216
[15] Ren J, Wu Y Z, Zhu S Q 2012 Chin. Phys. Lett. 29 060305
[16] Chakrabarty I, Agrawal P, Pati A K 2011 Eur. Phys. J. D 65 605
[17] Dhar H S, Ghosh R, Sen (De) A, Sen U 2012 EuroPhys. Lett. 98 30013
[18] Hassan1 A S M, Lari B, Joag P S 2012 Phys. Rev. A 85 024302
[19] Dillenschneider R 2008 Phys. Rev. B 78 224413
[20] Sun Z, Lu X M, Song L J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215504
[21] Wang L C, Shen J, Yi X X 2011 Chin. Phys. B 20 050306
[22] Sarandy M S 2009 Phys. Rev. A 80 022108
[23] Werlang T, Trippe C, Ribeiro G A P, Rigolin G 2010 Phys. Rev. Lett. 105 095702
[24] Guo J L, Mi Y J, Zhang J, Song H S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 065504
[25] Guo J L, Li Z D, Sun Y B 2011 Opt. Commun. 284 1461
[26] Werlang T, Rigolin G 2010 Phys. Rev. A 81 044101
[27] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[28] Groisman B, Popescu S, Winter A 2005 Phys. Rev. A 72 032317
引用本文: |
Citation: |
计量
- 文章访问数: 1452
- PDF下载量: 488
- 被引次数: 0