搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贪婪稀疏方法的心脏磁场源重构

邴璐 王伟远 王永良 蒋式勤

基于贪婪稀疏方法的心脏磁场源重构

邴璐, 王伟远, 王永良, 蒋式勤
PDF
导出引用
导出核心图
  • 心脏磁场源重构, 即通过人体胸腔表面的磁场阵列测量信号反演产生该磁场的电流源分布, 是一种无创地研究心脏电活动的方法. 本文用线性化方程描述测量磁场与心脏内部电流源的关系, 并通过一种贪婪优化的方法得到了源重构的稀疏解. 通过近似正交化过程和改变迭代算法中原子的选择方式, 降低了优化算法的复杂度, 可在保证源重构精度的情况下, 快速搜索源空间中强度比较大的位置. 文中通过一组正常人的心磁测量数据, 说明了源重构方法的有效性. 这组数据的研究结果表明, 强度大于65%的重构电流源的空间移动轨迹与心脏除极和复极电活动的传导过程基本符合. 其QRS 和ST-T 段的实测心磁图与重构电流源产生的磁场图的平均拟合优度分别为99.36%和99.78%.
    • 基金项目: 国家自然科学基金 (批准号: 60771030)、国家高技术研究发展计划 (批准号: 2008AA02Z308)、上海市重点基础研究发展计划 (批准号: 08JC1421800)、上海市重点学科建设项目 (B004) 和信息功能材料国家重点实验室开放课题资助的课题.
    [1]

    He B 2003 Modeling and Imaging of Bioelectrical Activity: Principles and applications (Minnesota: Kluwer Academic/Plenum Press)

    [2]

    Gutierrez D, Nehorai A, Dogandzic A 2006 IEEE Transactions on Biomedical Engineering 53 840

    [3]

    Moiseev A, Gaspar J M, Schneider J A, Herdman A T 2011 Neuroimage 58 481

    [4]

    Gorodnitsky I F, George J S, Rao B D 1995 Electroencephalography and clinical Neurophysiology 95 231

    [5]

    Melis M D, Tanaka K, Uchikawa Y 2010 IEEE Transactions on magnetics 38 1203

    [6]

    Michel C M, Murray M 2004 Clinical Neurophysiology 115 2195

    [7]

    Davis G 1994 Ph. D. Dissertation (U.S.A: New York University)

    [8]

    Chen S S, Donoho D L, Saunders M A 1998 SIAM Journal of Scientific Computing 20 33

    [9]

    Liu H S, Schimpf P H, Dong G Y, Gao X R, Yang F S, Gao S K 2005 IEEE Transactions on Biomedical Engineering 52 1681

    [10]

    Xu P, Tian Y, Chen H F, Yao D Z 2007 IEEE Transactions on Biomedical Engineering 54 400

    [11]

    Manoharana A, Morana J E, Bowyera S M, Masona K M, Tepleya N, Smitha B J, Barkleya G L 2007 International Congress Series. Eng. 1300 665

    [12]

    Bing L, Jiang S Q, 2012 International Conference on System Simulation Shanghai, China, April 4-6, 2012 p298

    [13]

    Mallat S, Zhang Z 1993 IEEE Transactions on Signal Processing 41 3397

    [14]

    Pati Y C, Rezaiifar R, Krishnaprasad S 1993 27th Annum Asilomar Conference on Signals Systems and Computers California, U.S.A, November 1-3, 1993 p101

    [15]

    Mallat S, Davis G, Zhang Z 1994 SPIE Journal of Optical Engineering 33 2183

    [16]

    Blumensath T, Davies M 2008 IEEE Transactions on Signal Processing 56 2370

    [17]

    Donoho D, Tsaig Y, Drori I, Starck J 2006 Tech. Rep. (U.S.A: Stanford University Press)

    [18]

    Zhu J J, Jiang S Q 2012 International Conference on System Simulation Shanghai, China, April 4-6, 2012 p302

    [19]

    Davies M E, Blumensath T 2008 Proceedings of the third International Symposium on Communications, Control and Signal Processing Malta, March 12-14, 2008 p774

    [20]

    Wang C S 2007 Cardiac conduction system (Beijing: Qinghua University Press) p84 (in Chinese) [王成山 2007 心脏传导系统基础与临床 (北京: 清华大学出版社) 第84页]

    [21]

    Yasunaga H, Yasunaga H, Harumizu S, Naomi I, Seiko K, Tohru S, Masayasu H 2002 Journal of Electrocardiology 35 p105

  • [1]

    He B 2003 Modeling and Imaging of Bioelectrical Activity: Principles and applications (Minnesota: Kluwer Academic/Plenum Press)

    [2]

    Gutierrez D, Nehorai A, Dogandzic A 2006 IEEE Transactions on Biomedical Engineering 53 840

    [3]

    Moiseev A, Gaspar J M, Schneider J A, Herdman A T 2011 Neuroimage 58 481

    [4]

    Gorodnitsky I F, George J S, Rao B D 1995 Electroencephalography and clinical Neurophysiology 95 231

    [5]

    Melis M D, Tanaka K, Uchikawa Y 2010 IEEE Transactions on magnetics 38 1203

    [6]

    Michel C M, Murray M 2004 Clinical Neurophysiology 115 2195

    [7]

    Davis G 1994 Ph. D. Dissertation (U.S.A: New York University)

    [8]

    Chen S S, Donoho D L, Saunders M A 1998 SIAM Journal of Scientific Computing 20 33

    [9]

    Liu H S, Schimpf P H, Dong G Y, Gao X R, Yang F S, Gao S K 2005 IEEE Transactions on Biomedical Engineering 52 1681

    [10]

    Xu P, Tian Y, Chen H F, Yao D Z 2007 IEEE Transactions on Biomedical Engineering 54 400

    [11]

    Manoharana A, Morana J E, Bowyera S M, Masona K M, Tepleya N, Smitha B J, Barkleya G L 2007 International Congress Series. Eng. 1300 665

    [12]

    Bing L, Jiang S Q, 2012 International Conference on System Simulation Shanghai, China, April 4-6, 2012 p298

    [13]

    Mallat S, Zhang Z 1993 IEEE Transactions on Signal Processing 41 3397

    [14]

    Pati Y C, Rezaiifar R, Krishnaprasad S 1993 27th Annum Asilomar Conference on Signals Systems and Computers California, U.S.A, November 1-3, 1993 p101

    [15]

    Mallat S, Davis G, Zhang Z 1994 SPIE Journal of Optical Engineering 33 2183

    [16]

    Blumensath T, Davies M 2008 IEEE Transactions on Signal Processing 56 2370

    [17]

    Donoho D, Tsaig Y, Drori I, Starck J 2006 Tech. Rep. (U.S.A: Stanford University Press)

    [18]

    Zhu J J, Jiang S Q 2012 International Conference on System Simulation Shanghai, China, April 4-6, 2012 p302

    [19]

    Davies M E, Blumensath T 2008 Proceedings of the third International Symposium on Communications, Control and Signal Processing Malta, March 12-14, 2008 p774

    [20]

    Wang C S 2007 Cardiac conduction system (Beijing: Qinghua University Press) p84 (in Chinese) [王成山 2007 心脏传导系统基础与临床 (北京: 清华大学出版社) 第84页]

    [21]

    Yasunaga H, Yasunaga H, Harumizu S, Naomi I, Seiko K, Tohru S, Masayasu H 2002 Journal of Electrocardiology 35 p105

  • [1] 尹艳玲, 乔钢, 刘凇佐, 周锋. 基于基追踪去噪的水声正交频分复用稀疏信道估计. 物理学报, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301
    [2] 赵晨, 蒋式勤, 石明伟, 朱俊杰. 非均匀电磁介质中的等效源重构. 物理学报, 2014, 63(7): 078702. doi: 10.7498/aps.63.078702
    [3] 周大方, 张树林, 蒋式勤. 用于心脏电活动成像的空间滤波器输出噪声抑制方法. 物理学报, 2018, 67(15): 158702. doi: 10.7498/aps.67.20180294
    [4] 朱红毅, 沈建其, 李 军. 一种新的求解脑磁逆问题的搜索方法. 物理学报, 2004, 53(3): 947-951. doi: 10.7498/aps.53.947
    [5] 戴远东, 王福仁, 李壮志, 马 平, 谢飞翔, 杨 涛, 聂瑞娟, 刘新元, 谢柏青. 射频SQUID心磁图数据自适应滤波研究. 物理学报, 2005, 54(4): 1937-1942. doi: 10.7498/aps.54.1937
    [6] 曾曙光, 张彬. 光参量啁啾脉冲放大的逆问题. 物理学报, 2009, 58(4): 2476-2481. doi: 10.7498/aps.58.2476
    [7] 丁光涛. Hamilton系统Noether理论的新型逆问题. 物理学报, 2010, 59(3): 1423-1427. doi: 10.7498/aps.59.1423
    [8] 楚晓亮, 张 彬, 蔡邦维, 魏晓峰, 朱启华, 黄小军, 袁晓东, 曾小明, 刘兰琴, 王 逍, 王晓东, 周凯南, 郭 仪. 啁啾脉冲多程放大及其逆问题的研究. 物理学报, 2005, 54(10): 4696-4700. doi: 10.7498/aps.54.4696
    [9] 周大方, 蒋式勤, 赵晨, Petervan Leeuwen. P波间期的心脏电流源重建及电活动磁成像. 物理学报, 2019, 68(13): 138701. doi: 10.7498/aps.68.20190005
    [10] 黄卫立. 一般完整系统Mei对称性的逆问题. 物理学报, 2015, 64(17): 170202. doi: 10.7498/aps.64.170202
  • 引用本文:
    Citation:
计量
  • 文章访问数:  658
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-29
  • 刊出日期:  2013-06-05

基于贪婪稀疏方法的心脏磁场源重构

  • 1. 同济大学电子与信息工程学院, 控制科学与控制工程系, 上海 201804;
  • 2. 中国科学院上海微系统与信息技术研究所, 上海 200050
    基金项目: 

    国家自然科学基金 (批准号: 60771030)、国家高技术研究发展计划 (批准号: 2008AA02Z308)、上海市重点基础研究发展计划 (批准号: 08JC1421800)、上海市重点学科建设项目 (B004) 和信息功能材料国家重点实验室开放课题资助的课题.

摘要: 心脏磁场源重构, 即通过人体胸腔表面的磁场阵列测量信号反演产生该磁场的电流源分布, 是一种无创地研究心脏电活动的方法. 本文用线性化方程描述测量磁场与心脏内部电流源的关系, 并通过一种贪婪优化的方法得到了源重构的稀疏解. 通过近似正交化过程和改变迭代算法中原子的选择方式, 降低了优化算法的复杂度, 可在保证源重构精度的情况下, 快速搜索源空间中强度比较大的位置. 文中通过一组正常人的心磁测量数据, 说明了源重构方法的有效性. 这组数据的研究结果表明, 强度大于65%的重构电流源的空间移动轨迹与心脏除极和复极电活动的传导过程基本符合. 其QRS 和ST-T 段的实测心磁图与重构电流源产生的磁场图的平均拟合优度分别为99.36%和99.78%.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回