搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

心脏磁场分布电流源重构及其精度分析

王伟远 赵晨 林玉章 张树林 谢晓明 蒋式勤

心脏磁场分布电流源重构及其精度分析

王伟远, 赵晨, 林玉章, 张树林, 谢晓明, 蒋式勤
PDF
导出引用
导出核心图
  • 用测量到的心脏磁场信号重构其电流源是一种无创揭示心脏电活动的方法. 心脏电活动的时空信息可视化, 将有助于心脏功能的研究和心脏疾病诊断. 本文通过仿真实验研究了一种减时窗波束形成器对分布时变电流源的重构能力, 以及源重构结果与心室兴奋传播的关系. 采用元胞自动机模拟心室的兴奋传播, 产生分布随时间变化的电流源, 并用边界元法构建了一个心脏-躯干模型, 模拟体电导的作用. 仿真结果表明, 这种减时窗波束形成器能够重构分布时变电流源, 并达到较好的精度. 将该方法和无穷大均匀介质导联矩阵用于一例正常人的心脏磁场信号分析, 其结果可以反映心室兴奋传播的基本特征.
    • 基金项目: 国家自然科学基金(批准号: 60771030);国家高技术研究发展计划(批准号: 2008AA02Z308);上海市重点基础研究发展计划(批准号: 08JC1421800);上海市重点学科建设项目(批准号: B004)和信息功能材料国家重点实验室开放基金资助的课题.
    [1]

    Nenonen J, Katila T, Leinio M, Montonen J, Makijarvi M, Siltanen P 1991 Biomed. Engin. IEEE Trans. 38 648

    [2]

    Ziolkowski M, Haueisen J, Leder U 2002 Biomed. Engin. IEEE Trans. 49 1379

    [3]

    De Melis M, Tanaka K, Uchikawa Y 2010 Magnet. IEEE Trans. 46 1203

    [4]

    Cohen D, Edelsack E A, Zimmerman J E 1970 Appl. Phys. Lett. 16 278

    [5]

    Andrä W, Nowak H 2007 Magnetism in Medicine: A Handbook (Weinberin: Wiley-VCH)

    [6]

    Zhang S L, Wang Y L, Wang H W, Jiang S Q, Xie X M 2009 Phys. Med. Biol. 54 4793

    [7]

    Tolstrup K, Madsen B E, Ruiz J A, Greenwood S D, Camacho J, Siegel R J, Gertzen H C, Park J W, Smars P A 2006 Cardiology 106 270

    [8]

    Lim H K, Chung N, Ko Y G, Lee Y H, Park Y K 2009 Magnet. IEEE Trans. 45 2890

    [9]

    On K, Watanabe S, Yamada S, Takeyasu N, Nakagawa Y, Nishina H, Morimoto T, Aihara H, Kimura T, Sato Y, Tsukada K, Kandori A, Miyashita T, Ogata K, Suzuki D, Yamaguchi I, Aonuma K 2007 Circul. J. Official J. Jpn. Circul. Soc. 71 1586

    [10]

    Van Leeuwen P, Hailer B, Beck A, Eiling G, Grönemeyer D 2011 Ann. Noninvas. Electrocardiol. 16 379

    [11]

    van Veen B D, van Drongelen W, Yuchtman M, Suzuki A 1997 Biomed. Engin. IEEE Trans. 44 867

    [12]

    Robinson S E, Vrba J 1999 Recent Adv. Biomagnet. 302

    [13]

    Sekihara K, Nagarajan S S, Poeppel D, Marantz A, Miyashita Y 2000 Biomed. Engin. IEEE Trans. 48 760

    [14]

    Kim K, Lee Y H, Kwon H, Kim J M, Bae J 2006 Comput. Biol. Med. 36 253

    [15]

    Kim K, Kim D, Shim E B, Lee Y H, Kwon H, Park Y K 2007 Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging Hangzhou, China, 12-14 October, 2007

    [16]

    Im U B, Kwon S S, Kim K, Lee Y H, Park Y K, Youn C H, Shim E B 2008 Prog. Biophys. Molecular Biol. 96 339

    [17]

    Wang W Y, Zhou D F, Jiang S Q 2012 International Conference on System Simulation Shanghai, China, Apri 6-9 2012, p293

    [18]

    Plonsey R 1969 Biomagnetic Phenomena (New York: McGraw-Hill)

    [19]

    Geselowitz D 1970 Magnet. IEEE Trans. 6 346

    [20]

    Sarvas J 1987 Phys. Med. Biol. 32 11

    [21]

    Stenroos M, Mäntynen V, Nenonen J 2007 Comput. Methods and Programs Biomed. 88 256

    [22]

    Tang F K, Wang Q, Hua N, Tang X Z, Lu H, Ma P 2010 Chin. Phys. B 19 1674

    [23]

    Tang F K, Wang Q, Hua N, Lu H, Tang X Z, Ma P 2011 Chin. Phys. B 20 1674

    [24]

    Amoroso S, Patt Y N 1972 J. Comput. Syst. Sci. 6 448

    [25]

    Wei D 1997 Prog. Biophys. Molecular Biol. 67 17

    [26]

    Wang C S 2007 Basic and Clinical Cardiac Conduction System (Beijing: Tsinghua University Press) pp81-84 (in Chinese) [王成山 2007 心脏传导系统基础与临床 (北京:清华大学出版社) 第81–84页]

  • [1]

    Nenonen J, Katila T, Leinio M, Montonen J, Makijarvi M, Siltanen P 1991 Biomed. Engin. IEEE Trans. 38 648

    [2]

    Ziolkowski M, Haueisen J, Leder U 2002 Biomed. Engin. IEEE Trans. 49 1379

    [3]

    De Melis M, Tanaka K, Uchikawa Y 2010 Magnet. IEEE Trans. 46 1203

    [4]

    Cohen D, Edelsack E A, Zimmerman J E 1970 Appl. Phys. Lett. 16 278

    [5]

    Andrä W, Nowak H 2007 Magnetism in Medicine: A Handbook (Weinberin: Wiley-VCH)

    [6]

    Zhang S L, Wang Y L, Wang H W, Jiang S Q, Xie X M 2009 Phys. Med. Biol. 54 4793

    [7]

    Tolstrup K, Madsen B E, Ruiz J A, Greenwood S D, Camacho J, Siegel R J, Gertzen H C, Park J W, Smars P A 2006 Cardiology 106 270

    [8]

    Lim H K, Chung N, Ko Y G, Lee Y H, Park Y K 2009 Magnet. IEEE Trans. 45 2890

    [9]

    On K, Watanabe S, Yamada S, Takeyasu N, Nakagawa Y, Nishina H, Morimoto T, Aihara H, Kimura T, Sato Y, Tsukada K, Kandori A, Miyashita T, Ogata K, Suzuki D, Yamaguchi I, Aonuma K 2007 Circul. J. Official J. Jpn. Circul. Soc. 71 1586

    [10]

    Van Leeuwen P, Hailer B, Beck A, Eiling G, Grönemeyer D 2011 Ann. Noninvas. Electrocardiol. 16 379

    [11]

    van Veen B D, van Drongelen W, Yuchtman M, Suzuki A 1997 Biomed. Engin. IEEE Trans. 44 867

    [12]

    Robinson S E, Vrba J 1999 Recent Adv. Biomagnet. 302

    [13]

    Sekihara K, Nagarajan S S, Poeppel D, Marantz A, Miyashita Y 2000 Biomed. Engin. IEEE Trans. 48 760

    [14]

    Kim K, Lee Y H, Kwon H, Kim J M, Bae J 2006 Comput. Biol. Med. 36 253

    [15]

    Kim K, Kim D, Shim E B, Lee Y H, Kwon H, Park Y K 2007 Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging Hangzhou, China, 12-14 October, 2007

    [16]

    Im U B, Kwon S S, Kim K, Lee Y H, Park Y K, Youn C H, Shim E B 2008 Prog. Biophys. Molecular Biol. 96 339

    [17]

    Wang W Y, Zhou D F, Jiang S Q 2012 International Conference on System Simulation Shanghai, China, Apri 6-9 2012, p293

    [18]

    Plonsey R 1969 Biomagnetic Phenomena (New York: McGraw-Hill)

    [19]

    Geselowitz D 1970 Magnet. IEEE Trans. 6 346

    [20]

    Sarvas J 1987 Phys. Med. Biol. 32 11

    [21]

    Stenroos M, Mäntynen V, Nenonen J 2007 Comput. Methods and Programs Biomed. 88 256

    [22]

    Tang F K, Wang Q, Hua N, Tang X Z, Lu H, Ma P 2010 Chin. Phys. B 19 1674

    [23]

    Tang F K, Wang Q, Hua N, Lu H, Tang X Z, Ma P 2011 Chin. Phys. B 20 1674

    [24]

    Amoroso S, Patt Y N 1972 J. Comput. Syst. Sci. 6 448

    [25]

    Wei D 1997 Prog. Biophys. Molecular Biol. 67 17

    [26]

    Wang C S 2007 Basic and Clinical Cardiac Conduction System (Beijing: Tsinghua University Press) pp81-84 (in Chinese) [王成山 2007 心脏传导系统基础与临床 (北京:清华大学出版社) 第81–84页]

  • [1] 王伟远, 蒋式勤, 周大方, 朱嘉辰, 闫玉蕊, 权薇薇. 基于多时窗波束形成器方法的心脏磁场信号分析. 物理学报, 2014, 63(24): 248702. doi: 10.7498/aps.63.248702
    [2] 赵晨, 蒋式勤, 石明伟, 朱俊杰. 非均匀电磁介质中的等效源重构. 物理学报, 2014, 63(7): 078702. doi: 10.7498/aps.63.078702
    [3] 戴远东, 王福仁, 李壮志, 马 平, 谢飞翔, 杨 涛, 聂瑞娟, 刘新元, 谢柏青. 射频SQUID心磁图数据自适应滤波研究. 物理学报, 2005, 54(4): 1937-1942. doi: 10.7498/aps.54.1937
    [4] 邴璐, 王伟远, 王永良, 蒋式勤. 基于贪婪稀疏方法的心脏磁场源重构. 物理学报, 2013, 62(11): 118703. doi: 10.7498/aps.62.118703
    [5] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究 . 物理学报, 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [6] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究. 物理学报, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [7] 陈赓华, 张利华, 黄旭光, 翟光杰, 李俊文, 汤玉林, 冯 稷, 赵 莉. 互补型自适应滤波器在心磁信号处理中的应用. 物理学报, 2004, 53(12): 4420-4427. doi: 10.7498/aps.53.4420
    [8] 叶亚龙, 李艳青, 张阿漫. 基于势流理论的气枪气泡远场压力子波特性研究. 物理学报, 2014, 63(5): 054706. doi: 10.7498/aps.63.054706
    [9] 朱俊杰, 蒋式勤, 王伟远, 赵晨, 王永良, 李文生, 权薇薇. 多腔体心脏磁场模型的研究与应用. 物理学报, 2014, 63(5): 058703. doi: 10.7498/aps.63.058703
    [10] 周大方, 张树林, 蒋式勤. 用于心脏电活动成像的空间滤波器输出噪声抑制方法. 物理学报, 2018, 67(15): 158702. doi: 10.7498/aps.67.20180294
    [11] 范展, 梁国龙, 付进, 王燕. 基于信号子空间重构的鲁棒子区域Frost波束形成. 物理学报, 2015, 64(5): 054303. doi: 10.7498/aps.64.054303
    [12] 朱红毅, 李 军, 沈建其, 何赛灵. 利用脑磁图-多重信号分类算法求解真实头模型中磁源定位问题. 物理学报, 2003, 52(7): 1812-1817. doi: 10.7498/aps.52.1812
    [13] 程玉民, 秦义校. 弹性力学的重构核粒子边界无单元法. 物理学报, 2006, 55(7): 3215-3222. doi: 10.7498/aps.55.3215
    [14] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术. 物理学报, 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [15] 朱佩平, 郑 欣, 袁清习, 田玉莲, 黄万霞, 吴自玉, 王寯越. 基于离散Fourier变换的内源全息图重构计算方法. 物理学报, 2005, 54(3): 1172-1177. doi: 10.7498/aps.54.1172
    [16] 毕传兴, 袁艳, 贺春东, 徐亮. 基于分布源边界点法的局部近场声全息技术. 物理学报, 2010, 59(12): 8646-8654. doi: 10.7498/aps.59.8646
    [17] 张显斌, 施 卫. 基于可调谐准高斯波束太赫兹源的成像系统研究. 物理学报, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
    [18] 魏雷, 林鑫, 王猛, 黄卫东. 基于MeshTV界面重构算法的二元合金自由枝晶生长元胞自动机模型. 物理学报, 2012, 61(9): 098104. doi: 10.7498/aps.61.098104
    [19] 陆学善, 梁敬魁, 王晓堂. Fe-Ga二元系平衡图. 物理学报, 1966, 129(4): 429-439. doi: 10.7498/aps.22.429
    [20] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型. 物理学报, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
  • 引用本文:
    Citation:
计量
  • 文章访问数:  749
  • PDF下载量:  571
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-25
  • 修回日期:  2013-03-27
  • 刊出日期:  2013-07-20

心脏磁场分布电流源重构及其精度分析

  • 1. 同济大学电子与信息工程学院控制科学与控制工程系, 上海 201804;
  • 2. 中国科学院上海微系统与信息技术研究所, 上海 200050
    基金项目: 

    国家自然科学基金(批准号: 60771030)

    国家高技术研究发展计划(批准号: 2008AA02Z308)

    上海市重点基础研究发展计划(批准号: 08JC1421800)

    上海市重点学科建设项目(批准号: B004)和信息功能材料国家重点实验室开放基金资助的课题.

摘要: 用测量到的心脏磁场信号重构其电流源是一种无创揭示心脏电活动的方法. 心脏电活动的时空信息可视化, 将有助于心脏功能的研究和心脏疾病诊断. 本文通过仿真实验研究了一种减时窗波束形成器对分布时变电流源的重构能力, 以及源重构结果与心室兴奋传播的关系. 采用元胞自动机模拟心室的兴奋传播, 产生分布随时间变化的电流源, 并用边界元法构建了一个心脏-躯干模型, 模拟体电导的作用. 仿真结果表明, 这种减时窗波束形成器能够重构分布时变电流源, 并达到较好的精度. 将该方法和无穷大均匀介质导联矩阵用于一例正常人的心脏磁场信号分析, 其结果可以反映心室兴奋传播的基本特征.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回