搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输入受限的混沌系统同步控制

谢林柏 周志刚 张正道

输入受限的混沌系统同步控制

谢林柏, 周志刚, 张正道
PDF
导出引用
  • 在混沌系统的同步控制中, 由于混沌系统对初始状态的敏感性, 一旦两个混沌系统的状态初值偏差大, 其状态同步往往需要高幅值的控制律来达到, 这给同步控制实现带来了困难, 并且在同步控制中, 两个混沌系统的初始值通常是未知的. 本文考虑控制输入受限情况下的混沌同步控制问题, 基于符号函数的近似表示式, 将受限的控制输入建模为连续可微的光滑函数, 在每一个采样点将同步控制误差系统近似为局部最优线性模型并设计连续型线性二次型调节器(LQR)最优控制律. 为降低混沌同步控制律的幅值和维持同步系统采样时刻之间的动态, 设计了等价的离散最优控制律, 并通过调整LQR性能加权矩阵值, 确保同步控制信号不会超出其受限的上界. 最后对统一混沌模型下的三种不同混沌系统同步控制进行了仿真研究. 仿真结果验证了方法的有效性.
    • 基金项目: 国家自然科学基金(批准号:60804013,61374047)资助的课题.
    [1]

    Zribi M, Smaoui N, Salim H 2009 Chaos Soliton. Fract. 42 3197

    [2]

    Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪 2013 物理学报 62 080507]

    [3]

    Qi D L, Wang Q, Yang J 2011 Chin. Phys. B 20 100505

    [4]

    Chen Z W, Wang J, Pang S J 2012 Acta Phys. Sin. 61 220505 (in Chinese) [陈志旺, 王敬, 庞双杰 2012 物理学报 61 220505]

    [5]

    Che Y Q, Wang J, Chan W L, Tsang K M 2010 Nonlinear Dyn. 61 847

    [6]

    Zang H Y, Min L Q, Zhao Q, Chen G R 2013 Chin. Phys. Lett. 30 040502

    [7]

    Fu S H, Lu Q S, Du Y 2012 Chin. Phys. B 6 060507

    [8]

    Li H Y, Hu Y A, Ren J C, Zhu M, Liu L 2012 Acta Phys. Sin. 61 140502 (in Chinese) [李海燕, 胡云安, 任建存, 朱敏, 刘亮 2012 物理学报 61 140502]

    [9]

    Shan L, Li J, Wang Z Q 2006 Acta Phys. Sin. 55 3950 (in Chinese) [单梁, 李军, 王执铨 2006 物理学报 55 3950]

    [10]

    Li C B, Chen S, Zhu H Q 2009 Acta Phys. Sin. 58 2255 (in Chinese) [李春彪, 陈谡, 朱焕强 2009 物理学报 58 2255]

    [11]

    Li S H, Cai H X 2004 Acta Phys. Sin. 53 1687 (in Chinese) [李世华, 蔡海兴 2004 物理学报 53 1687]

    [12]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [13]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [14]

    Guo S M, Shieh L S, Lin C F, Chandra J 2001 Int. J. Bifurcat. Chaos 11 1079

    [15]

    Azzaz M S, Tanougast C, Sadoudi S, Bouridance A 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2035

    [16]

    Ali S Z, Islam M K, Zafrullah M 2012 Optimal Rev. 19 320

    [17]

    Wei Y, Fan L, Xia G Q, Chen Y L, Wu Z M 2012 Acta Phys. Sin. 61 224203 (in Chinese) [魏月, 樊利, 夏光琼, 陈于淋, 吴正茂 2012 物理学报 61 224203]

    [18]

    Luo C, Wang X Y 2013 Int. J. Mod. Phys. C 24 1350025

    [19]

    Wang X Y, Zhang N, Ren X L, Zhang Y L 2011 Chin. Phys. B 20 020507

    [20]

    Zhu F L 2009 Chaos Soliton. Fract. 40 2384

    [21]

    Bouraoui H, Kemih K 2013 Acta Phys. Pol. A 123 259

    [22]

    Shieh L S, Tsay Y T, Yates R 1983 IEEE Proc. Cont. Th. App. Part D 130 111

    [23]

    Chen Y S, Tsai J S H, Shieh L S, Kung F C 2002 IEEE Trans. Circ. Syst. I 49 1860

    [24]

    Xie L B, Ozkul S, Sawant M, Shieh L S, Tsai J S H 2012 Int. J. Syst. Sci. 752546

  • [1]

    Zribi M, Smaoui N, Salim H 2009 Chaos Soliton. Fract. 42 3197

    [2]

    Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪 2013 物理学报 62 080507]

    [3]

    Qi D L, Wang Q, Yang J 2011 Chin. Phys. B 20 100505

    [4]

    Chen Z W, Wang J, Pang S J 2012 Acta Phys. Sin. 61 220505 (in Chinese) [陈志旺, 王敬, 庞双杰 2012 物理学报 61 220505]

    [5]

    Che Y Q, Wang J, Chan W L, Tsang K M 2010 Nonlinear Dyn. 61 847

    [6]

    Zang H Y, Min L Q, Zhao Q, Chen G R 2013 Chin. Phys. Lett. 30 040502

    [7]

    Fu S H, Lu Q S, Du Y 2012 Chin. Phys. B 6 060507

    [8]

    Li H Y, Hu Y A, Ren J C, Zhu M, Liu L 2012 Acta Phys. Sin. 61 140502 (in Chinese) [李海燕, 胡云安, 任建存, 朱敏, 刘亮 2012 物理学报 61 140502]

    [9]

    Shan L, Li J, Wang Z Q 2006 Acta Phys. Sin. 55 3950 (in Chinese) [单梁, 李军, 王执铨 2006 物理学报 55 3950]

    [10]

    Li C B, Chen S, Zhu H Q 2009 Acta Phys. Sin. 58 2255 (in Chinese) [李春彪, 陈谡, 朱焕强 2009 物理学报 58 2255]

    [11]

    Li S H, Cai H X 2004 Acta Phys. Sin. 53 1687 (in Chinese) [李世华, 蔡海兴 2004 物理学报 53 1687]

    [12]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [13]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [14]

    Guo S M, Shieh L S, Lin C F, Chandra J 2001 Int. J. Bifurcat. Chaos 11 1079

    [15]

    Azzaz M S, Tanougast C, Sadoudi S, Bouridance A 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2035

    [16]

    Ali S Z, Islam M K, Zafrullah M 2012 Optimal Rev. 19 320

    [17]

    Wei Y, Fan L, Xia G Q, Chen Y L, Wu Z M 2012 Acta Phys. Sin. 61 224203 (in Chinese) [魏月, 樊利, 夏光琼, 陈于淋, 吴正茂 2012 物理学报 61 224203]

    [18]

    Luo C, Wang X Y 2013 Int. J. Mod. Phys. C 24 1350025

    [19]

    Wang X Y, Zhang N, Ren X L, Zhang Y L 2011 Chin. Phys. B 20 020507

    [20]

    Zhu F L 2009 Chaos Soliton. Fract. 40 2384

    [21]

    Bouraoui H, Kemih K 2013 Acta Phys. Pol. A 123 259

    [22]

    Shieh L S, Tsay Y T, Yates R 1983 IEEE Proc. Cont. Th. App. Part D 130 111

    [23]

    Chen Y S, Tsai J S H, Shieh L S, Kung F C 2002 IEEE Trans. Circ. Syst. I 49 1860

    [24]

    Xie L B, Ozkul S, Sawant M, Shieh L S, Tsai J S H 2012 Int. J. Syst. Sci. 752546

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1267
  • PDF下载量:  452
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-23
  • 修回日期:  2013-06-24
  • 刊出日期:  2013-09-05

输入受限的混沌系统同步控制

  • 1. 江南大学, 轻工过程先进控制教育部重点实验室, 无锡 214122
    基金项目: 

    国家自然科学基金(批准号:60804013,61374047)资助的课题.

摘要: 在混沌系统的同步控制中, 由于混沌系统对初始状态的敏感性, 一旦两个混沌系统的状态初值偏差大, 其状态同步往往需要高幅值的控制律来达到, 这给同步控制实现带来了困难, 并且在同步控制中, 两个混沌系统的初始值通常是未知的. 本文考虑控制输入受限情况下的混沌同步控制问题, 基于符号函数的近似表示式, 将受限的控制输入建模为连续可微的光滑函数, 在每一个采样点将同步控制误差系统近似为局部最优线性模型并设计连续型线性二次型调节器(LQR)最优控制律. 为降低混沌同步控制律的幅值和维持同步系统采样时刻之间的动态, 设计了等价的离散最优控制律, 并通过调整LQR性能加权矩阵值, 确保同步控制信号不会超出其受限的上界. 最后对统一混沌模型下的三种不同混沌系统同步控制进行了仿真研究. 仿真结果验证了方法的有效性.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回