搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟

华钰超 董源 曹炳阳

硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟

华钰超, 董源, 曹炳阳
PDF
导出引用
导出核心图
  • 通过建立声子散射概率函数描述声子在输运过程中的散射,提出了一种模拟声子弹道扩散导热的蒙特卡罗方法,并将其应用于硅纳米薄膜中的稳态和瞬态弹道扩散导热过程的研究. 提出的蒙特卡罗方法对边界发射的声子束进行跟踪,根据散射概率函数模拟声子束在传播区域内经历的散射过程,并通过统计声子束的分布得到温度分布. 稳态导热过程的模拟发现,尺寸效应会引起边界温度跳跃,其值随着Knudsen数的增大而增大;计算的硅纳米薄膜的热导率随着厚度的增大而增大,与文献中的实验数据和理论模型相符. 通过瞬态导热过程的模拟得到了纳米薄膜内的温度分布随时间的变化,发现瞬态导热过程中的热波现象与空间尺度相关,材料尺寸越小,弹道输运越强,薄膜中的热波现象也越显著.
    • 基金项目: 国家自然科学基金(批准号:51322603,51321002,51136001)、新世纪优秀人才支持计划和清华大学自主科研计划资助的课题.
    [1]

    Flik M, Choi B I, Goodson K E 1992 J. Heat Trans. T. Asme 114 666

    [2]

    Ziman J M 1968 Electrons and Phonons (Oxford: Oxford University Press) p15

    [3]

    Joshi A A, Majumdar A 1993 J. Appl. Phys. 74 31

    [4]

    Chen G 2000 Phys. Rev. Lett. 86 2297

    [5]

    Alvareza F X, Jou D 2007 Appl. Phys. Lett. 90 083109

    [6]

    Dong Y, Cao B Y, Guo Z Y 2011 J. Appl. Phys. 110 063504

    [7]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Carbon 66 567

    [8]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强, 孔宪仁, 孙兆伟, 王亚辉 2006 物理学报 55 1]

    [9]

    Jiaung W S, Ho J R 2008 Phys. Rev. E 77 066710

    [10]

    Klitsner T, van Cleve J E, Fischer H E, Pohl R O 1988 Phys. Rev. B 38 7576

    [11]

    Peterson R B 1994 J. Heat Trans.-T ASME 116 815

    [12]

    Chen Y F, Li D Y, Lukes J R, Majumdar A 2005 J. Heat Trans. T. Asme 127 1129

    [13]

    Wang Z, Zhao R J, Chen Y F 2010 Sci. China Tech. Sci. 53 429

    [14]

    Jeng M S, Yang R G, Song D, Chen G 2008 J. Heat Trans. T. Asme 130 042410

    [15]

    Lacroix D, Joulain K, Lemonnier D 2005 Phys. Rev. B 72 064305

    [16]

    Siegel R, Howell J R 1992 Thermal Radiation Heat Transfer (Washington, D.C.: Hemisphere Publish Corporation)

    [17]

    Cao B Y, Kong J, Xu Y, Yung K L, Cai A 2013 Heat Transfer Eng. 34 2131

    [18]

    Huang K (adapted by Han R Q) 1988 Solid Physics (Beijing: High Education Press) pp122–133 (in Chinese) [黄昆原著, (韩汝琦改编) 1988 固体物理(北京: 高等教育出版社)第122–133页]

    [19]

    Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005

    [20]

    Liu W, Asheghi M 2004 Appl. Phys. Lett. 84 3819

    [21]

    Asheghi M, Leung Y K, Wong S S, Goodson K E 1997 Appl. Phys. Lett. 71 1798

    [22]

    Ju Y S, Kurabayashi K, Goodson K E 1999 Thin Solid Films 339 160

    [23]

    Majumdar A 1993 J. Heat Trans. T. Asme 115 7

    [24]

    Li B W, Wang J 2003 Phys. Rev. Lett. 91 044301

    [25]

    Yang N, Zhang C, Li B W 2010 Nano Today 5 85

    [26]

    Rieder Z, Lebowitz J L, Lieb E 1967 J. Math. Phys. 8 1073

    [27]

    Bruesch P 1982 Phonons: Theory and Experiment (Vol.3) (Berlin: Springer-Verlag, Berlin Heidelberg)

    [28]

    Körner C, Bergmann H W 1998 Appl. Phys. A 67 397

    [29]

    Naqvi K R, Waldenstrom S 2005 Phys. Rev. Lett. 95 065901

    [30]

    Alvareza F X, Jou D 2010 J. Heat Trans. T. Asme 132 012404

    [31]

    Cao B Y, Guo Z Y 2007 J. Appl. Phys. 102 53503

    [32]

    Ackerman C C, Bertman B, Fairbank H A, Guyer R A 1966 Phys. Rev. Lett. 16 789

  • [1]

    Flik M, Choi B I, Goodson K E 1992 J. Heat Trans. T. Asme 114 666

    [2]

    Ziman J M 1968 Electrons and Phonons (Oxford: Oxford University Press) p15

    [3]

    Joshi A A, Majumdar A 1993 J. Appl. Phys. 74 31

    [4]

    Chen G 2000 Phys. Rev. Lett. 86 2297

    [5]

    Alvareza F X, Jou D 2007 Appl. Phys. Lett. 90 083109

    [6]

    Dong Y, Cao B Y, Guo Z Y 2011 J. Appl. Phys. 110 063504

    [7]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Carbon 66 567

    [8]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强, 孔宪仁, 孙兆伟, 王亚辉 2006 物理学报 55 1]

    [9]

    Jiaung W S, Ho J R 2008 Phys. Rev. E 77 066710

    [10]

    Klitsner T, van Cleve J E, Fischer H E, Pohl R O 1988 Phys. Rev. B 38 7576

    [11]

    Peterson R B 1994 J. Heat Trans.-T ASME 116 815

    [12]

    Chen Y F, Li D Y, Lukes J R, Majumdar A 2005 J. Heat Trans. T. Asme 127 1129

    [13]

    Wang Z, Zhao R J, Chen Y F 2010 Sci. China Tech. Sci. 53 429

    [14]

    Jeng M S, Yang R G, Song D, Chen G 2008 J. Heat Trans. T. Asme 130 042410

    [15]

    Lacroix D, Joulain K, Lemonnier D 2005 Phys. Rev. B 72 064305

    [16]

    Siegel R, Howell J R 1992 Thermal Radiation Heat Transfer (Washington, D.C.: Hemisphere Publish Corporation)

    [17]

    Cao B Y, Kong J, Xu Y, Yung K L, Cai A 2013 Heat Transfer Eng. 34 2131

    [18]

    Huang K (adapted by Han R Q) 1988 Solid Physics (Beijing: High Education Press) pp122–133 (in Chinese) [黄昆原著, (韩汝琦改编) 1988 固体物理(北京: 高等教育出版社)第122–133页]

    [19]

    Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005

    [20]

    Liu W, Asheghi M 2004 Appl. Phys. Lett. 84 3819

    [21]

    Asheghi M, Leung Y K, Wong S S, Goodson K E 1997 Appl. Phys. Lett. 71 1798

    [22]

    Ju Y S, Kurabayashi K, Goodson K E 1999 Thin Solid Films 339 160

    [23]

    Majumdar A 1993 J. Heat Trans. T. Asme 115 7

    [24]

    Li B W, Wang J 2003 Phys. Rev. Lett. 91 044301

    [25]

    Yang N, Zhang C, Li B W 2010 Nano Today 5 85

    [26]

    Rieder Z, Lebowitz J L, Lieb E 1967 J. Math. Phys. 8 1073

    [27]

    Bruesch P 1982 Phonons: Theory and Experiment (Vol.3) (Berlin: Springer-Verlag, Berlin Heidelberg)

    [28]

    Körner C, Bergmann H W 1998 Appl. Phys. A 67 397

    [29]

    Naqvi K R, Waldenstrom S 2005 Phys. Rev. Lett. 95 065901

    [30]

    Alvareza F X, Jou D 2010 J. Heat Trans. T. Asme 132 012404

    [31]

    Cao B Y, Guo Z Y 2007 J. Appl. Phys. 102 53503

    [32]

    Ackerman C C, Bertman B, Fairbank H A, Guyer R A 1966 Phys. Rev. Lett. 16 789

  • [1] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [2] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [3] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控. 物理学报, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [4] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [5] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [6] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [7] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [8] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [9] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [10] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [11] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [12] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [13] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
  • 引用本文:
    Citation:
计量
  • 文章访问数:  651
  • PDF下载量:  749
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-23
  • 修回日期:  2013-09-20
  • 刊出日期:  2013-12-20

硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟

  • 1. 清华大学工程力学系, 热科学与动力工程教育部重点实验室, 北京 100084
    基金项目: 

    国家自然科学基金(批准号:51322603,51321002,51136001)、新世纪优秀人才支持计划和清华大学自主科研计划资助的课题.

摘要: 通过建立声子散射概率函数描述声子在输运过程中的散射,提出了一种模拟声子弹道扩散导热的蒙特卡罗方法,并将其应用于硅纳米薄膜中的稳态和瞬态弹道扩散导热过程的研究. 提出的蒙特卡罗方法对边界发射的声子束进行跟踪,根据散射概率函数模拟声子束在传播区域内经历的散射过程,并通过统计声子束的分布得到温度分布. 稳态导热过程的模拟发现,尺寸效应会引起边界温度跳跃,其值随着Knudsen数的增大而增大;计算的硅纳米薄膜的热导率随着厚度的增大而增大,与文献中的实验数据和理论模型相符. 通过瞬态导热过程的模拟得到了纳米薄膜内的温度分布随时间的变化,发现瞬态导热过程中的热波现象与空间尺度相关,材料尺寸越小,弹道输运越强,薄膜中的热波现象也越显著.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回