搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟

华钰超 董源 曹炳阳

硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟

华钰超, 董源, 曹炳阳
PDF
导出引用
导出核心图
  • 通过建立声子散射概率函数描述声子在输运过程中的散射,提出了一种模拟声子弹道扩散导热的蒙特卡罗方法,并将其应用于硅纳米薄膜中的稳态和瞬态弹道扩散导热过程的研究. 提出的蒙特卡罗方法对边界发射的声子束进行跟踪,根据散射概率函数模拟声子束在传播区域内经历的散射过程,并通过统计声子束的分布得到温度分布. 稳态导热过程的模拟发现,尺寸效应会引起边界温度跳跃,其值随着Knudsen数的增大而增大;计算的硅纳米薄膜的热导率随着厚度的增大而增大,与文献中的实验数据和理论模型相符. 通过瞬态导热过程的模拟得到了纳米薄膜内的温度分布随时间的变化,发现瞬态导热过程中的热波现象与空间尺度相关,材料尺寸越小,弹道输运越强,薄膜中的热波现象也越显著.
    • 基金项目: 国家自然科学基金(批准号:51322603,51321002,51136001)、新世纪优秀人才支持计划和清华大学自主科研计划资助的课题.
    [1]

    Flik M, Choi B I, Goodson K E 1992 J. Heat Trans. T. Asme 114 666

    [2]

    Ziman J M 1968 Electrons and Phonons (Oxford: Oxford University Press) p15

    [3]

    Joshi A A, Majumdar A 1993 J. Appl. Phys. 74 31

    [4]

    Chen G 2000 Phys. Rev. Lett. 86 2297

    [5]

    Alvareza F X, Jou D 2007 Appl. Phys. Lett. 90 083109

    [6]

    Dong Y, Cao B Y, Guo Z Y 2011 J. Appl. Phys. 110 063504

    [7]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Carbon 66 567

    [8]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强, 孔宪仁, 孙兆伟, 王亚辉 2006 物理学报 55 1]

    [9]

    Jiaung W S, Ho J R 2008 Phys. Rev. E 77 066710

    [10]

    Klitsner T, van Cleve J E, Fischer H E, Pohl R O 1988 Phys. Rev. B 38 7576

    [11]

    Peterson R B 1994 J. Heat Trans.-T ASME 116 815

    [12]

    Chen Y F, Li D Y, Lukes J R, Majumdar A 2005 J. Heat Trans. T. Asme 127 1129

    [13]

    Wang Z, Zhao R J, Chen Y F 2010 Sci. China Tech. Sci. 53 429

    [14]

    Jeng M S, Yang R G, Song D, Chen G 2008 J. Heat Trans. T. Asme 130 042410

    [15]

    Lacroix D, Joulain K, Lemonnier D 2005 Phys. Rev. B 72 064305

    [16]

    Siegel R, Howell J R 1992 Thermal Radiation Heat Transfer (Washington, D.C.: Hemisphere Publish Corporation)

    [17]

    Cao B Y, Kong J, Xu Y, Yung K L, Cai A 2013 Heat Transfer Eng. 34 2131

    [18]

    Huang K (adapted by Han R Q) 1988 Solid Physics (Beijing: High Education Press) pp122–133 (in Chinese) [黄昆原著, (韩汝琦改编) 1988 固体物理(北京: 高等教育出版社)第122–133页]

    [19]

    Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005

    [20]

    Liu W, Asheghi M 2004 Appl. Phys. Lett. 84 3819

    [21]

    Asheghi M, Leung Y K, Wong S S, Goodson K E 1997 Appl. Phys. Lett. 71 1798

    [22]

    Ju Y S, Kurabayashi K, Goodson K E 1999 Thin Solid Films 339 160

    [23]

    Majumdar A 1993 J. Heat Trans. T. Asme 115 7

    [24]

    Li B W, Wang J 2003 Phys. Rev. Lett. 91 044301

    [25]

    Yang N, Zhang C, Li B W 2010 Nano Today 5 85

    [26]

    Rieder Z, Lebowitz J L, Lieb E 1967 J. Math. Phys. 8 1073

    [27]

    Bruesch P 1982 Phonons: Theory and Experiment (Vol.3) (Berlin: Springer-Verlag, Berlin Heidelberg)

    [28]

    Körner C, Bergmann H W 1998 Appl. Phys. A 67 397

    [29]

    Naqvi K R, Waldenstrom S 2005 Phys. Rev. Lett. 95 065901

    [30]

    Alvareza F X, Jou D 2010 J. Heat Trans. T. Asme 132 012404

    [31]

    Cao B Y, Guo Z Y 2007 J. Appl. Phys. 102 53503

    [32]

    Ackerman C C, Bertman B, Fairbank H A, Guyer R A 1966 Phys. Rev. Lett. 16 789

  • [1]

    Flik M, Choi B I, Goodson K E 1992 J. Heat Trans. T. Asme 114 666

    [2]

    Ziman J M 1968 Electrons and Phonons (Oxford: Oxford University Press) p15

    [3]

    Joshi A A, Majumdar A 1993 J. Appl. Phys. 74 31

    [4]

    Chen G 2000 Phys. Rev. Lett. 86 2297

    [5]

    Alvareza F X, Jou D 2007 Appl. Phys. Lett. 90 083109

    [6]

    Dong Y, Cao B Y, Guo Z Y 2011 J. Appl. Phys. 110 063504

    [7]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Carbon 66 567

    [8]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强, 孔宪仁, 孙兆伟, 王亚辉 2006 物理学报 55 1]

    [9]

    Jiaung W S, Ho J R 2008 Phys. Rev. E 77 066710

    [10]

    Klitsner T, van Cleve J E, Fischer H E, Pohl R O 1988 Phys. Rev. B 38 7576

    [11]

    Peterson R B 1994 J. Heat Trans.-T ASME 116 815

    [12]

    Chen Y F, Li D Y, Lukes J R, Majumdar A 2005 J. Heat Trans. T. Asme 127 1129

    [13]

    Wang Z, Zhao R J, Chen Y F 2010 Sci. China Tech. Sci. 53 429

    [14]

    Jeng M S, Yang R G, Song D, Chen G 2008 J. Heat Trans. T. Asme 130 042410

    [15]

    Lacroix D, Joulain K, Lemonnier D 2005 Phys. Rev. B 72 064305

    [16]

    Siegel R, Howell J R 1992 Thermal Radiation Heat Transfer (Washington, D.C.: Hemisphere Publish Corporation)

    [17]

    Cao B Y, Kong J, Xu Y, Yung K L, Cai A 2013 Heat Transfer Eng. 34 2131

    [18]

    Huang K (adapted by Han R Q) 1988 Solid Physics (Beijing: High Education Press) pp122–133 (in Chinese) [黄昆原著, (韩汝琦改编) 1988 固体物理(北京: 高等教育出版社)第122–133页]

    [19]

    Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005

    [20]

    Liu W, Asheghi M 2004 Appl. Phys. Lett. 84 3819

    [21]

    Asheghi M, Leung Y K, Wong S S, Goodson K E 1997 Appl. Phys. Lett. 71 1798

    [22]

    Ju Y S, Kurabayashi K, Goodson K E 1999 Thin Solid Films 339 160

    [23]

    Majumdar A 1993 J. Heat Trans. T. Asme 115 7

    [24]

    Li B W, Wang J 2003 Phys. Rev. Lett. 91 044301

    [25]

    Yang N, Zhang C, Li B W 2010 Nano Today 5 85

    [26]

    Rieder Z, Lebowitz J L, Lieb E 1967 J. Math. Phys. 8 1073

    [27]

    Bruesch P 1982 Phonons: Theory and Experiment (Vol.3) (Berlin: Springer-Verlag, Berlin Heidelberg)

    [28]

    Körner C, Bergmann H W 1998 Appl. Phys. A 67 397

    [29]

    Naqvi K R, Waldenstrom S 2005 Phys. Rev. Lett. 95 065901

    [30]

    Alvareza F X, Jou D 2010 J. Heat Trans. T. Asme 132 012404

    [31]

    Cao B Y, Guo Z Y 2007 J. Appl. Phys. 102 53503

    [32]

    Ackerman C C, Bertman B, Fairbank H A, Guyer R A 1966 Phys. Rev. Lett. 16 789

  • [1] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [2] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [3] 张 杨, 张建华, 文玉华, 朱梓忠. 含圆孔纳米薄膜在拉伸加载下变形机理的原子级模拟研究. 物理学报, 2008, 57(11): 7094-7099. doi: 10.7498/aps.57.7094
    [4] 徐 洲, 王秀喜, 梁海弋, 吴恒安. 纳米单晶与多晶铜薄膜力学行为的数值模拟研究. 物理学报, 2004, 53(11): 3637-3643. doi: 10.7498/aps.53.3637
    [5] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究 . 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [6] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [7] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [8] 周志东, 张颖, 张春祖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [9] 赵 辉, 何大伟, 王永生, 徐叙瑢. ZnS型薄膜电致发光器件输运过程的解析能带模拟. 物理学报, 2000, 49(9): 1867-1872. doi: 10.7498/aps.49.1867
    [10] 张波萍, 焦力实, 张 芸, 李向阳. Au/SiO2纳米复合薄膜的微结构及光吸收特性研究. 物理学报, 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
    [11] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究. 物理学报, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [12] 曹 娟, 高晨阳, 徐 灿. 第一性原理研究一维SiO2纳米材料的结构和性质. 物理学报, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [13] 丁建文, 颜晓红, 唐娜斯, 缪智武. 畸变对hopping电导的影响:ThueMorse纳米结构模型. 物理学报, 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
    [14] 何丽静, 林晓娉, 王铁宝, 刘春阳. 单晶Si表面离子束溅射沉积Co纳米薄膜的研究. 物理学报, 2007, 56(12): 7158-7164. doi: 10.7498/aps.56.7158
    [15] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [16] 李艳茹, 何秋香, 王芳, 向浪, 钟建新, 孟利军. 金属纳米薄膜在石墨基底表面的动力学演化. 物理学报, 2016, 65(3): 036804. doi: 10.7498/aps.65.036804
    [17] 王度阳, 孙慧卿, 解晓宇, 张盼君. GaN基LED量子阱内量子点发光性质的模拟分析. 物理学报, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [18] 徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究. 物理学报, 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [19] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [20] 山田亮子, 渡边光男, 高飞, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1005
  • PDF下载量:  753
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-23
  • 修回日期:  2013-09-20
  • 刊出日期:  2013-12-20

硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟

  • 1. 清华大学工程力学系, 热科学与动力工程教育部重点实验室, 北京 100084
    基金项目: 

    国家自然科学基金(批准号:51322603,51321002,51136001)、新世纪优秀人才支持计划和清华大学自主科研计划资助的课题.

摘要: 通过建立声子散射概率函数描述声子在输运过程中的散射,提出了一种模拟声子弹道扩散导热的蒙特卡罗方法,并将其应用于硅纳米薄膜中的稳态和瞬态弹道扩散导热过程的研究. 提出的蒙特卡罗方法对边界发射的声子束进行跟踪,根据散射概率函数模拟声子束在传播区域内经历的散射过程,并通过统计声子束的分布得到温度分布. 稳态导热过程的模拟发现,尺寸效应会引起边界温度跳跃,其值随着Knudsen数的增大而增大;计算的硅纳米薄膜的热导率随着厚度的增大而增大,与文献中的实验数据和理论模型相符. 通过瞬态导热过程的模拟得到了纳米薄膜内的温度分布随时间的变化,发现瞬态导热过程中的热波现象与空间尺度相关,材料尺寸越小,弹道输运越强,薄膜中的热波现象也越显著.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回