-
忆阻和磁阻效应在当前电子信息存储领域都有着广泛的应用. 近年来, 硫族化合物SnSe2作为一种同时具有忆阻与磁阻效应的存储材料, 受到广大科研工作者的关注, 该材料的电输运机理的深入探索具有十分重要意义. 本文采用熔融法结合放电等离子烧结技术成功制备了高纯度的SnSe2块体材料, 测量了不同温度、不同磁场条件下的电流-电压特性曲线, 系统地研究了其忆阻与磁阻效应. 研究表明: 不同温度下的忆阻特征可被归结为缺陷控制下的空间电荷限制电流效应; 温度降低导致忆阻现象减弱, 这与低温下杂质电离较弱导致可接受注入载流子的缺陷变少从而空间电荷限制电流效应变弱有关. 同时发现, 样品在低温下呈现较大的负磁阻效应, 这是因为在低温下杂质散射占主导作用, 电子在传导时会受到杂质的多重散射导致载流子局域化, 负磁阻效应与磁场对载流子局域化的抑制作用有关; 随着温度升高, 散射机制逐渐由杂质散射转变为晶格散射为主, 负磁阻效应逐渐转变为正磁阻效应.
-
关键词:
- 忆阻 /
- 空间电荷限制电流效应 /
- 磁阻 /
- 载流子局域化
Memristor and magnetoresistance (MR) are widely used in the field of information storage. In recent years, SnSe2, as an information storage material with both memristor and MR effects, has received a lot of attention of the researchers. It is of great significance to further explore its electrical transport mechanism. In this paper, the high-purity bulk SnSe2 samples are prepared by melting method together with spark plasma sintering. The V-I curves are measured under different temperatures and magnetic fields. The memristive and MR effect of SnSe2 are systematically investigated. After the memristive characteristics are excluded from interfacial junction effect, phase transition and conductive wire channels, the memristive effect at different temperatures is attributed to the space charge limiting current effect under defect control. Under low electric field conditions, the internal carrier concentration of material is much higher than the injected carrier concentration and the V-I curve obeys ohmic conduction. When the voltage increases to the switching voltage Von, the internal defects of the material are filled with the injected carriers as the transport time of the injected carrier is less than the dielectric relaxation time, and the V-I curves deviate from ohmic conductivity. When the voltage reaches the transition voltage VTFL, the injected carrier increases exponentially, and the V-I curve presents negative differential phenomenon. Finally, the space charge inside the material will limit the further injection of external carriers, and the V-I curve follows the Child law. As the temperature decreases to 10 K, the memristive phenomenon weakens because a large number of defects for accepting the injected carriers are reduced due to the decrease of impurity ionization at low temperatures. At the same time, the sample exhibits a large negative MR at 10 K and 100 K. When impurity scattering predominates, the electrons will be subjected to multiple scattering by the impurities, resulting in localization of carriers. The negative MR effect is related to the inhibition of the carrier localization by the magnetic field. In our work, a large negative MR of about –37% at 0.6 T and 10 K are obtained, which is likely to originate from the disordered distribution of Se vacancy in the material. With the increase of temperature, the scattering mechanism gradually evolves from the impurity scattering into the lattice scattering, and the negative MR effect gradually develops into the positive MR effect.-
Keywords:
- memristive effect /
- space charge limiting current effect /
- magnetoresistance effect /
- carrier localization
[1] Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar
[2] Sawa A 2008 Mater. Today 11 28
[3] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar
[4] Segui Y, Ai B, Carchano H 1976 J. Appl. Phys. 47 140Google Scholar
[5] Scott J C, Bozano L D 2007 Adv. Mater. 19 1452Google Scholar
[6] 缪向水, 李祎, 孙华军, 薛堪豪 2018 忆阻器导论 (北京: 科学出版社) 第14−20页
Miu X S, Li W, Sun H J, Xue K H 2018 Introduction to memristor (Beijing: Science Press) pp14−20 (in Chinese)
[7] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar
Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar
[8] Windeln J, Bram C, Eckes H L, Hammel D, Huth J, Marien J, Röhl H, Schug C, Wahl M, Wienss A 2001 Appl. Surf. Sci. 179 167Google Scholar
[9] 韩秀峰 2014 自旋电子学导论 (北京: 科学出版社) 第13−20页
Han X F 2014 Introduction to Spintronics (Beijing: Science Press) pp13−20 (in Chinese)
[10] Prezioso M, Riminucci A, Graziosi P, Bergenti I, Rakshit R, Cecchini R, Vianelli A, Borgatti F, Haag N, Willis M, Drew A J, Gillin W P, Dediu V A 2013 Adv. Mater. 25 534Google Scholar
[11] Tang Y, Li D C, Chen Z, Deng S P, Sun L Q, Liu W T, Shen L X, Deng S K 2018 Chin. Phys. B 27 118105Google Scholar
[12] Liu C Y, Miao L, Wang X Y, Wu S H, Zheng Y Y, Deng Z Y, Chen Y L, Wang G W, Zhou X Y 2018 Chin. Phys. B 27 047211Google Scholar
[13] Borges Z V, Poffo C M, de Lima J C, de Souza S M, Triches D M, Nogueira T P O, Manzato L, de Biasi R S 2016 Mater. Chem. Phys. 169 47Google Scholar
[14] Chung K M, Wamwangi D, Woda M, Wuttig M, Bensch W 2008 J. Appl. Phys. 103 083523Google Scholar
[15] Micoulaut M, Welnic W, Wuttig M 2008 Phys. Rev. B 78 224209Google Scholar
[16] Wang R Y, Caldwell M A, Jeyasingh R G D, Aloni S, Shelby R M, Wong H S P, Milliron D J 2011 J. Appl. Phys. 109 113506Google Scholar
[17] Lee S, Lee Y T, Park S G, Lee K H, Kim S W, Hwang D K, Lee K 2018 Adv. Electron. Mater. 4 1700563Google Scholar
[18] Xu P P, Fu T Z, Xin J Z, Liu Y T, Ying P J, Zhao X B, Pan H G, Zhu T J 2017 Sci. Bull. 62 1663Google Scholar
[19] Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar
[20] Fernandes P A, Sousa M G, Salome P M P, Leitao J P, da Cunha A F 2013 Crystengcomm 15 10278Google Scholar
[21] Saha S, Banik A, Biswas K 2016 Chem. Eur. J. 22 15634Google Scholar
[22] Shu Y J, Su X L, Xie H Y, Zheng G, Liu W, Yan Y G, Luo T T, Yang X, Yang D W, Uher C, Tang X F 2018 ACS Appl. Mater. Interfaces 10 15793Google Scholar
[23] Jameson J R, Gilbert N, Koushan F, Saenz J, Wang J, Hollmer S, Kozicki M N 2011 Appl. Phys. Lett. 99 063506Google Scholar
[24] van den Hurk J, Havel V, Linn E, Waser R, Valov I 2013 Sci. Rep. 3 2856Google Scholar
[25] van den Hurk J, Dippel A C, Cho D Y, Straquadine J, Breuer U, Walter P, Waser R, Valov I 2014 Phys. Chem. Chem. Phys. 16 18217Google Scholar
[26] Hasegawa T, Terabe K, Nakayama T, Aono M 2005 Nature 433 47Google Scholar
[27] Ohno T, Hasegawa T, Nayak A, Tsuruoka T, Gimzewski J K, Aono M 2011 Appl. Phys. Lett. 99 203108Google Scholar
[28] Zhang J J, Sun H J, Li Y, Wang Q, Xu X H, Miao X S 2013 Appl. Phys. Lett. 102 183513Google Scholar
[29] Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar
[30] Han N, Kim S I, Yang J D, Lee K, Sohn H, So H M, Ahn C W, Yoo K H 2011 Adv. Mater. 23 1871Google Scholar
[31] Li Y, Zhong Y P, Zhang J J, Xu X H, Wang Q, Xu L, Sun H J, Miao X S 2013 Appl. Phys. Lett. 103 043501Google Scholar
[32] Wiedemeier H, Pultz G, Gaur U, Wunderlich B 1981 Thermochim. Acta 43 297Google Scholar
[33] Lagnier R, Ayache C, Harbec J Y, Jandl S, Jay-Gerin J P 1983 Solid State Commun. 48 65
[34] Shang D S, Wang Q, Chen L D, Dong R, Li X M, Zhang W Q 2006 Phys. Rev. B 73 245427Google Scholar
[35] Du Y M, Pan H, Wang S J, Wu T, Feng Y P, Pan J S, Wee A T S 2012 Acs Nano 6 2517Google Scholar
[36] Chen X G, Ma X B, Yang Y B, Chen L P, Xiong G C, Lian G J, Yang Y C, Yang J B 2011 Appl. Phys. Lett. 98 122102Google Scholar
[37] Mark P, Helfrich W 1962 J. Appl. Phys. 33 205Google Scholar
[38] Montero J M, Bisquert J 2011 J. Appl. Phys. 110 327
[39] Lampert M A 1956 Phys. Rev. 103 1648Google Scholar
[40] Kytin V, Dittrich T, Koch F, Lebedev E 2001 Appl. Phys. Lett. 79 108Google Scholar
[41] Zhang W, Thiess A, Zalden P, Zeller R, Dederichs P H, Raty J Y, Wuttig M, Bluegel S, Mazzarello R 2012 Nat. Mater. 11 952Google Scholar
-
图 2 (a) SnSe2粉体XRD, 插图为样品的晶体结构; (b)和(c) 样品断面FESEM图; (d) EDS能谱图; (e) EDS面扫Se分布图; (f) EDS面扫Sn分布图
Fig. 2. (a) XRD patterns of SnSe2, the inset is the crystal structure of the SnSe2; (b) and (c) FESEM images of the fresh fracture surface of SnSe2 after SPS synthesis; (d) EDS spectrum of SnSe2; (e) the Se elemental map and (f) the Sn elemental map.
图 4 (a) 300 K下器件在–100 mA → 0 → 100 mA → 0 → –100 mA循环3次的V-I曲线, 插图为器件模型图; (b) 10 K下器件在–100 mA → 0 → 100 mA → 0 → –100 mA循环3次的V-I曲线
Fig. 4. (a) V-I characteristic curves of SnSe2 with current sweep as –100 mA → 0 → 100 mA → 0 → –100 mA for 3 times at 300 K, the inset shows the schematic of the device; (b) V-I characteristic curves of SnSe2 with current sweep as –100 mA → 0 → 100 mA → 0 → –100 mA for 3 times at 10 K.
图 5 (a) 在环境温度285 K下(0 mA → 100 mA → 0 mA)的V-I循环图, 插图为器件未控温直接与空气进行热交换的红外测试示意图; (b)样品在(a)中A, B, C点时的温度分布; (c) SnSe2的DSC曲线
Fig. 5. (a) V-I characteristic curves of SnSe2 in current sweep as 0 mA → 100 mA → 0 mA at ambient temperature 285 K, the inset shows the ultrared detection diagram of the device directly exchanging heat with air; (b) temperature distribution maps of the sample at temperature points A, B and C in (a); (c) the DSC curves of SnSe2.
图 7 不同磁场下的V-I曲线 (a) 300 K; (c) 200 K; (e) 100 K; (g) 10 K; 不同磁场下lgV-lgI曲线 (b) 300 K; (d) 200 K; (f) 100 K; (h) 10 K; 图(b)和图(d)中插图为曲线的局部放大图
Fig. 7. V-I characteristic curves under different magnetic fields at 300 K (a), 200 K (c), 100 K (e) and 10 K (g), respectively; lgV-lgI characteristic curves under different magnetic fields at 300 K (b), 200 K (d), 100 K (f) and 10 K (h), respectively. The insets in (b) and (d) show the magnified parts of curves.
图 8 (a)晶格散射主导下的电子输运过程; (b) 磁场对晶格散射主导的电子运动过程影响; (c) 杂质散射主导的电子局域化行为; (d) 磁场对杂质散射时的电子局域化抑制行为
Fig. 8. (a) Electron motion process dominated by lattice scattering; (b) influence of magnetic field on the electron motion process dominated by lattice scattering; (c) electron localization process dominated by impurity scattering; (d) influence of magnetic field on the electron localization process dominated by impurity scattering.
-
[1] Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar
[2] Sawa A 2008 Mater. Today 11 28
[3] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar
[4] Segui Y, Ai B, Carchano H 1976 J. Appl. Phys. 47 140Google Scholar
[5] Scott J C, Bozano L D 2007 Adv. Mater. 19 1452Google Scholar
[6] 缪向水, 李祎, 孙华军, 薛堪豪 2018 忆阻器导论 (北京: 科学出版社) 第14−20页
Miu X S, Li W, Sun H J, Xue K H 2018 Introduction to memristor (Beijing: Science Press) pp14−20 (in Chinese)
[7] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar
Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar
[8] Windeln J, Bram C, Eckes H L, Hammel D, Huth J, Marien J, Röhl H, Schug C, Wahl M, Wienss A 2001 Appl. Surf. Sci. 179 167Google Scholar
[9] 韩秀峰 2014 自旋电子学导论 (北京: 科学出版社) 第13−20页
Han X F 2014 Introduction to Spintronics (Beijing: Science Press) pp13−20 (in Chinese)
[10] Prezioso M, Riminucci A, Graziosi P, Bergenti I, Rakshit R, Cecchini R, Vianelli A, Borgatti F, Haag N, Willis M, Drew A J, Gillin W P, Dediu V A 2013 Adv. Mater. 25 534Google Scholar
[11] Tang Y, Li D C, Chen Z, Deng S P, Sun L Q, Liu W T, Shen L X, Deng S K 2018 Chin. Phys. B 27 118105Google Scholar
[12] Liu C Y, Miao L, Wang X Y, Wu S H, Zheng Y Y, Deng Z Y, Chen Y L, Wang G W, Zhou X Y 2018 Chin. Phys. B 27 047211Google Scholar
[13] Borges Z V, Poffo C M, de Lima J C, de Souza S M, Triches D M, Nogueira T P O, Manzato L, de Biasi R S 2016 Mater. Chem. Phys. 169 47Google Scholar
[14] Chung K M, Wamwangi D, Woda M, Wuttig M, Bensch W 2008 J. Appl. Phys. 103 083523Google Scholar
[15] Micoulaut M, Welnic W, Wuttig M 2008 Phys. Rev. B 78 224209Google Scholar
[16] Wang R Y, Caldwell M A, Jeyasingh R G D, Aloni S, Shelby R M, Wong H S P, Milliron D J 2011 J. Appl. Phys. 109 113506Google Scholar
[17] Lee S, Lee Y T, Park S G, Lee K H, Kim S W, Hwang D K, Lee K 2018 Adv. Electron. Mater. 4 1700563Google Scholar
[18] Xu P P, Fu T Z, Xin J Z, Liu Y T, Ying P J, Zhao X B, Pan H G, Zhu T J 2017 Sci. Bull. 62 1663Google Scholar
[19] Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar
[20] Fernandes P A, Sousa M G, Salome P M P, Leitao J P, da Cunha A F 2013 Crystengcomm 15 10278Google Scholar
[21] Saha S, Banik A, Biswas K 2016 Chem. Eur. J. 22 15634Google Scholar
[22] Shu Y J, Su X L, Xie H Y, Zheng G, Liu W, Yan Y G, Luo T T, Yang X, Yang D W, Uher C, Tang X F 2018 ACS Appl. Mater. Interfaces 10 15793Google Scholar
[23] Jameson J R, Gilbert N, Koushan F, Saenz J, Wang J, Hollmer S, Kozicki M N 2011 Appl. Phys. Lett. 99 063506Google Scholar
[24] van den Hurk J, Havel V, Linn E, Waser R, Valov I 2013 Sci. Rep. 3 2856Google Scholar
[25] van den Hurk J, Dippel A C, Cho D Y, Straquadine J, Breuer U, Walter P, Waser R, Valov I 2014 Phys. Chem. Chem. Phys. 16 18217Google Scholar
[26] Hasegawa T, Terabe K, Nakayama T, Aono M 2005 Nature 433 47Google Scholar
[27] Ohno T, Hasegawa T, Nayak A, Tsuruoka T, Gimzewski J K, Aono M 2011 Appl. Phys. Lett. 99 203108Google Scholar
[28] Zhang J J, Sun H J, Li Y, Wang Q, Xu X H, Miao X S 2013 Appl. Phys. Lett. 102 183513Google Scholar
[29] Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar
[30] Han N, Kim S I, Yang J D, Lee K, Sohn H, So H M, Ahn C W, Yoo K H 2011 Adv. Mater. 23 1871Google Scholar
[31] Li Y, Zhong Y P, Zhang J J, Xu X H, Wang Q, Xu L, Sun H J, Miao X S 2013 Appl. Phys. Lett. 103 043501Google Scholar
[32] Wiedemeier H, Pultz G, Gaur U, Wunderlich B 1981 Thermochim. Acta 43 297Google Scholar
[33] Lagnier R, Ayache C, Harbec J Y, Jandl S, Jay-Gerin J P 1983 Solid State Commun. 48 65
[34] Shang D S, Wang Q, Chen L D, Dong R, Li X M, Zhang W Q 2006 Phys. Rev. B 73 245427Google Scholar
[35] Du Y M, Pan H, Wang S J, Wu T, Feng Y P, Pan J S, Wee A T S 2012 Acs Nano 6 2517Google Scholar
[36] Chen X G, Ma X B, Yang Y B, Chen L P, Xiong G C, Lian G J, Yang Y C, Yang J B 2011 Appl. Phys. Lett. 98 122102Google Scholar
[37] Mark P, Helfrich W 1962 J. Appl. Phys. 33 205Google Scholar
[38] Montero J M, Bisquert J 2011 J. Appl. Phys. 110 327
[39] Lampert M A 1956 Phys. Rev. 103 1648Google Scholar
[40] Kytin V, Dittrich T, Koch F, Lebedev E 2001 Appl. Phys. Lett. 79 108Google Scholar
[41] Zhang W, Thiess A, Zalden P, Zeller R, Dederichs P H, Raty J Y, Wuttig M, Bluegel S, Mazzarello R 2012 Nat. Mater. 11 952Google Scholar
计量
- 文章访问数: 9209
- PDF下载量: 155
- 被引次数: 0