搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LiCoO2电池正极微结构模拟退火重构及传输物性预测

吴伟 蒋方明 曾建邦

LiCoO2电池正极微结构模拟退火重构及传输物性预测

吴伟, 蒋方明, 曾建邦
PDF
导出引用
  • 采用实验或数值方法对多孔复合电极微结构进行重构和特征化不仅是锂离子电池介观尺度数值模型的重要组成部分,也是通过数值技术由底向上进行电极微结构虚拟设计与优化的基础. 本文以某商用LiCoO2电池正极的孔隙率、电极组成材料的组分体积分数、活性材料颗粒粒径分布、相关函数等重要结构与统计信息作为输入参数,采用模拟退火法对其微结构进行了数值重建,得到了明确区分活性材料、固体添加物以及孔相(电解液)的微结构,其重要特性参数与实际电极一致. 对重构电极的特征化分析,得到了电极内部各组分的连通性、孔径分布等特征信息. 同时,采用D3Q15 格子Boltzmann 模型计算了重构电极的有效热导率以及电解液(或固相)的有效传输系数. 与随机行走模拟或Bruggemann等经验公式相比,基于实际电极微结构细节信息的介观数值方法对多孔电极有效传输系数的预测更为准确可靠.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51206171)和中国科学院百人计划(批准号:FJ)资助的课题.
    [1]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [2]

    Huang Z W, Hu S J, Hou X H, Zhao L Z, Ru Q, Li W S, Zhang Z W 2010 Chin. Phys. B 19 117101

    [3]

    Chen X C, Song Q, L H 2011 Marine Electr. Electron. Engineer. 31 1 (in Chinese) [陈新传, 宋强, 吕昊 2011 船电技术 31 1]

    [4]

    Chen Y C, Xie K, Pan Y, Zheng C M, Wang H L 2011 Chin. Phys. B 20 028201

    [5]

    Wang C W, Sastry A M 2007 J. Electrochem. Soc. 154 A1035

    [6]

    Du W B, Gupta A, Zhang X C, Sastry A M, Wei S Y 2010 Int. J. Heat Mass Transfer 53 3552

    [7]

    Gupta A, Seo J H, Zhang X C, Du W B, Sastry A M, Wei S Y 2011 J. Electrochem. Soc. 158 A487

    [8]

    Spanne P, Thovert J F, Jacquin C J 1994 Phys. Rev. Lett. 73 2001

    [9]

    Yoshizawa N, Tanaike O, Hatori H 2006 Carbon 44 2558

    [10]

    Groeber M A, Haley B K, Uchic M D 2006 Mater. Cha ract. 57 259

    [11]

    Shearing P R, Golbert J, Chater R 2009 J. Chem. Eng. Sci. 64 3928

    [12]

    Xu B, Wang S L, Li L Q, Li S J 2012 Acta Phys. Sin. 61 090201 (in Chinese) [徐波, 王树林, 李来强, 李生娟 2012 物理学报 61 090201]

    [13]

    Li J, Yang C Z, Zhang X G, Zhang J, Xia B J 2009 Acta Phys. Sin. 58 6573 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 物理学报 58 6573]

    [14]

    Qin P, Lou Y W, Yang C Z, Xia B J 2006 Acta Phys. Sin. 55 1325 (in Chinese) [钦佩, 娄豫皖, 杨传铮, 夏保佳 2006 物理学报 55 1325]

    [15]

    Quiblier J 1984 J. Colloid Interface Sci. 98 84

    [16]

    Yeong C L Y, Torquato S 1998 Phys. Rev. E 57 495

    [17]

    Kim S H, Pitsch H. 2009 J. Electrochem. Soc. 156 B673

    [18]

    Čapek P, Hejtmánek V, Brabec L, Zikánová A, Kočiřík M 2008 Transport in Porous Media 76 179

    [19]

    Wu W, Jiang F M 2013 Mater. Charact. 80 62

    [20]

    Bakke S, Oren P E 1997 J. SPE 2 136

    [21]

    Stephenson D E, Walker B C, Skelton C B, Gorzkowski E P, Rowenhorst D J, Wheeler D R 2011 J. Electrochem. Soc. 158 A781

    [22]

    Wu W, Jiang F M, Chen Z, Wang Y, Zhao F G, Zeng Y Q 2013 J. Inorg. Mater. 28 1243 (in Chinese) [吴伟, 蒋方明, 陈治, 汪颖, 赵丰刚, 曾毓群 2013 无机材料学报 28 1243]

    [23]

    Zhang T 2009 Ph. D. Dissertation ( Hefei: University of Science and Technology of China) (in Chinese) [张挺 2009 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Carson J K S, Lovatt J, Tanner D J, Cleland A C 2006 J. Food. Eng. 75 297

    [25]

    Wang J F, Carson J K, North M F, Cleland A C 2006 Int. J. Heat Mass Transfer 49 3075

    [26]

    Doyle M, Newman J, Fuller T F 1993 J. Electrochem. Soc. 140 1526

    [27]

    Das P K, Li X G, Liu Z S 2010 Appl. Energy 87 2785

    [28]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [29]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 1

    [30]

    Fan D, White R E 1991 J. Electrochem. Soc. 138 17

    [31]

    Patel K K, Paulser K M, Desilvestro J 2003 J. Power Sources 122 144

    [32]

    Thovert J F, Wary F, Adler P M 1990 J. Appl. Phys. 68 3872

    [33]

    Jiang F M, Sousa A C M 2006 Heat Mass Transfer 43 479

    [34]

    Shoshany Y, Prialnik D, Podolak M 2002 Icarus 157 219

    [35]

    Barta S, Dieska P 2002 Kovove Mater. 40 99

    [36]

    Wang M, Wang K, Pan N, Chen S 2007 Phys. Rev. E 75 036702

    [37]

    Xuan Y M, Zhao K, Li Q 2010 Heat Mass Transfer 46 1039

    [38]

    Joshi A S, Grew K N, Izzo J R, Peracchio A A, Chiu S W K 2010 J. Fuel Cell Sci. Technol. 7 011006

    [39]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (New York: Springer) p23

    [40]

    Zou Q, He X 1997 Phys. Fluids 9 1591

    [41]

    Wang J K, Wang M, Li Z X 2007 Int. J. Thermal Sci. 46 228

    [42]

    Ziegler D 1993 J. Stat. Phys. 71 1171

    [43]

    Hoshen J, Kopelman R 1976 Phys. Rev. B 14 3438

    [44]

    Kiyohara K, Sugino T, Asaka K 2010 J. Chem. Phys. 132 144705

    [45]

    Thorat V, Stephenson D E, Zacharias N A, Zaghib K, Harb J N, Wheeler D R 2009 J. Power Sources 188 592

    [46]

    Promentilla M A B, Sugiyama T, Hitomi T, Takeda N 2009 Cement Concrete Res. 39 548

  • [1]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [2]

    Huang Z W, Hu S J, Hou X H, Zhao L Z, Ru Q, Li W S, Zhang Z W 2010 Chin. Phys. B 19 117101

    [3]

    Chen X C, Song Q, L H 2011 Marine Electr. Electron. Engineer. 31 1 (in Chinese) [陈新传, 宋强, 吕昊 2011 船电技术 31 1]

    [4]

    Chen Y C, Xie K, Pan Y, Zheng C M, Wang H L 2011 Chin. Phys. B 20 028201

    [5]

    Wang C W, Sastry A M 2007 J. Electrochem. Soc. 154 A1035

    [6]

    Du W B, Gupta A, Zhang X C, Sastry A M, Wei S Y 2010 Int. J. Heat Mass Transfer 53 3552

    [7]

    Gupta A, Seo J H, Zhang X C, Du W B, Sastry A M, Wei S Y 2011 J. Electrochem. Soc. 158 A487

    [8]

    Spanne P, Thovert J F, Jacquin C J 1994 Phys. Rev. Lett. 73 2001

    [9]

    Yoshizawa N, Tanaike O, Hatori H 2006 Carbon 44 2558

    [10]

    Groeber M A, Haley B K, Uchic M D 2006 Mater. Cha ract. 57 259

    [11]

    Shearing P R, Golbert J, Chater R 2009 J. Chem. Eng. Sci. 64 3928

    [12]

    Xu B, Wang S L, Li L Q, Li S J 2012 Acta Phys. Sin. 61 090201 (in Chinese) [徐波, 王树林, 李来强, 李生娟 2012 物理学报 61 090201]

    [13]

    Li J, Yang C Z, Zhang X G, Zhang J, Xia B J 2009 Acta Phys. Sin. 58 6573 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 物理学报 58 6573]

    [14]

    Qin P, Lou Y W, Yang C Z, Xia B J 2006 Acta Phys. Sin. 55 1325 (in Chinese) [钦佩, 娄豫皖, 杨传铮, 夏保佳 2006 物理学报 55 1325]

    [15]

    Quiblier J 1984 J. Colloid Interface Sci. 98 84

    [16]

    Yeong C L Y, Torquato S 1998 Phys. Rev. E 57 495

    [17]

    Kim S H, Pitsch H. 2009 J. Electrochem. Soc. 156 B673

    [18]

    Čapek P, Hejtmánek V, Brabec L, Zikánová A, Kočiřík M 2008 Transport in Porous Media 76 179

    [19]

    Wu W, Jiang F M 2013 Mater. Charact. 80 62

    [20]

    Bakke S, Oren P E 1997 J. SPE 2 136

    [21]

    Stephenson D E, Walker B C, Skelton C B, Gorzkowski E P, Rowenhorst D J, Wheeler D R 2011 J. Electrochem. Soc. 158 A781

    [22]

    Wu W, Jiang F M, Chen Z, Wang Y, Zhao F G, Zeng Y Q 2013 J. Inorg. Mater. 28 1243 (in Chinese) [吴伟, 蒋方明, 陈治, 汪颖, 赵丰刚, 曾毓群 2013 无机材料学报 28 1243]

    [23]

    Zhang T 2009 Ph. D. Dissertation ( Hefei: University of Science and Technology of China) (in Chinese) [张挺 2009 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Carson J K S, Lovatt J, Tanner D J, Cleland A C 2006 J. Food. Eng. 75 297

    [25]

    Wang J F, Carson J K, North M F, Cleland A C 2006 Int. J. Heat Mass Transfer 49 3075

    [26]

    Doyle M, Newman J, Fuller T F 1993 J. Electrochem. Soc. 140 1526

    [27]

    Das P K, Li X G, Liu Z S 2010 Appl. Energy 87 2785

    [28]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [29]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 1

    [30]

    Fan D, White R E 1991 J. Electrochem. Soc. 138 17

    [31]

    Patel K K, Paulser K M, Desilvestro J 2003 J. Power Sources 122 144

    [32]

    Thovert J F, Wary F, Adler P M 1990 J. Appl. Phys. 68 3872

    [33]

    Jiang F M, Sousa A C M 2006 Heat Mass Transfer 43 479

    [34]

    Shoshany Y, Prialnik D, Podolak M 2002 Icarus 157 219

    [35]

    Barta S, Dieska P 2002 Kovove Mater. 40 99

    [36]

    Wang M, Wang K, Pan N, Chen S 2007 Phys. Rev. E 75 036702

    [37]

    Xuan Y M, Zhao K, Li Q 2010 Heat Mass Transfer 46 1039

    [38]

    Joshi A S, Grew K N, Izzo J R, Peracchio A A, Chiu S W K 2010 J. Fuel Cell Sci. Technol. 7 011006

    [39]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (New York: Springer) p23

    [40]

    Zou Q, He X 1997 Phys. Fluids 9 1591

    [41]

    Wang J K, Wang M, Li Z X 2007 Int. J. Thermal Sci. 46 228

    [42]

    Ziegler D 1993 J. Stat. Phys. 71 1171

    [43]

    Hoshen J, Kopelman R 1976 Phys. Rev. B 14 3438

    [44]

    Kiyohara K, Sugino T, Asaka K 2010 J. Chem. Phys. 132 144705

    [45]

    Thorat V, Stephenson D E, Zacharias N A, Zaghib K, Harb J N, Wheeler D R 2009 J. Power Sources 188 592

    [46]

    Promentilla M A B, Sugiyama T, Hitomi T, Takeda N 2009 Cement Concrete Res. 39 548

  • [1] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [2] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [3] 熊玲玲, 李建龙, 吕百达. 一种模拟二极管激光源场的新方法. 物理学报, 2009, 58(2): 975-979. doi: 10.7498/aps.58.975
    [4] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [5] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [6] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 . 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [7] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [8] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [9] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [10] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [11] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [12] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [13] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [14] 郭立平, 成之绪, 韩甫田, 柳 义, 赵志祥. 粉末衍射谱图分解的模拟退火法. 物理学报, 2003, 52(11): 2842-2848. doi: 10.7498/aps.52.2842
    [15] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [16] 张超英, 李华兵, 谭惠丽, 刘慕仁, 孔令江. 椭圆柱体在牛顿流体中运动的格子Boltzmann方法模拟. 物理学报, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [17] 张新明, 周超英, Islam Shams, 刘家琦. 用格子Boltzmann方法数值模拟三维空化现象. 物理学报, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [18] 毛威, 郭照立, 王亮. 热对流条件下颗粒沉降的格子Boltzmann方法模拟. 物理学报, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [19] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [20] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1512
  • PDF下载量:  1100
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-05
  • 修回日期:  2013-11-15
  • 刊出日期:  2014-02-05

LiCoO2电池正极微结构模拟退火重构及传输物性预测

  • 1. 中国科学院广州能源研究所, 先进能源系统实验室, 中国科学院可再生能源重点实验室, 广州 510640;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 

    国家自然科学基金青年科学基金(批准号:51206171)和中国科学院百人计划(批准号:FJ)资助的课题.

摘要: 采用实验或数值方法对多孔复合电极微结构进行重构和特征化不仅是锂离子电池介观尺度数值模型的重要组成部分,也是通过数值技术由底向上进行电极微结构虚拟设计与优化的基础. 本文以某商用LiCoO2电池正极的孔隙率、电极组成材料的组分体积分数、活性材料颗粒粒径分布、相关函数等重要结构与统计信息作为输入参数,采用模拟退火法对其微结构进行了数值重建,得到了明确区分活性材料、固体添加物以及孔相(电解液)的微结构,其重要特性参数与实际电极一致. 对重构电极的特征化分析,得到了电极内部各组分的连通性、孔径分布等特征信息. 同时,采用D3Q15 格子Boltzmann 模型计算了重构电极的有效热导率以及电解液(或固相)的有效传输系数. 与随机行走模拟或Bruggemann等经验公式相比,基于实际电极微结构细节信息的介观数值方法对多孔电极有效传输系数的预测更为准确可靠.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回