搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乘性和加性α稳定噪声环境下的过阻尼单稳随机共振现象

焦尚彬 任超 李鹏华 张青 谢国

乘性和加性α稳定噪声环境下的过阻尼单稳随机共振现象

焦尚彬, 任超, 李鹏华, 张青, 谢国
PDF
导出引用
导出核心图
  • 本文将α 稳定噪声与单稳随机共振系统相结合,研究了乘性和加性α 稳定噪声环境下的过阻尼单稳随机共振现象,探究了α 稳定噪声特征指数α(0 α ≤ 2)、对称参数β(-1 ≤ β ≤ 1),单稳系统参数a及乘性α 稳定噪声放大系数D对共振输出效应的作用规律. 研究结果表明,在不同分布的α 稳定噪声环境下,在一定范围内通过调节a或D均可诱导随机共振来实现单个或多个高、低频微弱信号的检测,且a和D分别存在一个最优值可使系统产生最佳的随机共振效应;不同α 或β 均可对系统共振输出效应产生规律性的影响,且α 或β在高、低频微弱信号检测中的作用规律相同;在研究α 稳定噪声环境下单、多频单稳随机共振现象时所得结论是相同的. 本研究结果可为实现α 稳定噪声环境下单稳随机共振系统参数的自适应调节奠定基础.
    • 基金项目: 国家自然科学基金(批准号:61304204)和陕西省教育厅自然科学专项基金(批准号:2013JK1050)资助的课题.
    [1]

    Stocks N G, Stein N D, McClintock P V E 1993 J. Phys. A: Math. Gen. 26 L385

    [2]

    Vilar J M G, Rub J M 1996 Phys. Rev. Lett. 77 2863

    [3]

    vstigneev M, Reimann P, Pankov V, Prince R H 2004 Europhys. Lett. 65 7

    [4]

    Zhang W, Xiang B R 2006 Talanta 70 267

    [5]

    Guo F, Huang Z Q, Fan Y, Li S F, Zhang Y 2009 Chin. Phys. Lett. 26 100504

    [6]

    Zhou B C, Xu W 2009 Chaos, Solitons & Fractals 40 401

    [7]

    He C D, Xu W, Yue X L 2010 Acta Phys. Sin. 59 5276 (in Chinese)[何成娣, 徐伟, 岳晓乐2010 物理学报59 5276]

    [8]

    Zhou Y R 2011 Chin. Phys. B 20 010501

    [9]

    Li J M, Chen X F, He Z J 2011 Journal of Mechanical Engineering 47 58 (in Chinese) [李继猛, 陈雪峰, 何正嘉 2011 机械工程学报47 58]

    [10]

    Yao M L, Xu W, Ning L J 2012 Nonlinear Dyn. 67 329

    [11]

    Zhang X Y, Xu W, Zhou B C 2012 Acta Phys. Sin. 61 030501 (in Chinese)[张晓燕, 徐伟, 周丙常2012 物理学报 61 030501]

    [12]

    Kang Y M, Xu J X, Xie Y 2003 Acta Phys. Sin. 52 2712 (in Chinese)[康艳梅, 徐健学, 谢勇2003 物理学报52 2712]

    [13]

    Guo F 2009 Physica A 388 2315

    [14]

    Guo F, Luo X D, Li S F, Zhou Y R 2010 Chin. Phys. B 19 080504

    [15]

    Qiu T S, Zhang X X, Li X B, Sun Y M 2004 Statistical Signal Processing–Non-Gaussian Signal Processing and its Applications (Beijing: Publishing House of Electronics Industry) p140 (in Chinese) [邱天爽, 张旭秀, 李小兵, 孙永梅2004 统计信号处理–非高斯信号处理及其应用(北京: 电子工业出版社) 第140 页]

    [16]

    Dybiec B, Gudowska-Nowak E 2006 Acta Phys. Pol. B 37 1479

    [17]

    Zeng L Z, Bao R H, Xu B H 2007 J. Phys. A: Math. Theor. 40 7175

    [18]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China 16 638 (in Chinese) [张文英, 王自力, 张卫东2009 控制工程16 638]

    [19]

    Zeng L Z, Xu B H 2010 Journal of physics A: Statistical Mechanics and its Applications 22 5128

    [20]

    Srokowski T 2012 Eur. Phys. J. B 85 1

    [21]

    Zhang G L, L X L, Kang Y M 2012 Acta Phys. Sin. 61 040501 (in Chinese)[张广丽, 吕希路, 康艳梅2012 物理学报61 040501]

    [22]

    Dybiec B 2009 Phys. Rev. E 80 041111

    [23]

    Hu N Q 2012 Stochastic Resonance Weak Characteristic Signal Detection Theory and Methods (Beijing: National Defense Industry Press) p60 (in Chinese) [胡茑庆2012 随机共振微弱特征信号检测理论与方法(北京: 国防工业出版社) 第60 页]

    [24]

    Jiao S B, Ren C, Huang W C, Liang Y M 2013 Acta Phys. Sin. 62 210501 (in Chinese)[焦尚彬, 任超, 黄伟超, 梁炎明2013 物理学报62 210501]

    [25]

    Tang Y, Zou W, Lu J Q, Kurths J 2012 Phys. Rev. E 85 1539

    [26]

    Liang Y J, Chen W 2013 Signal Processing 93 242

    [27]

    Agudov N V, Krichigin A V 2008 Radiophysics and Quantum Electronics 51 812

    [28]

    Weron R 1996 Statist. Prob. Lett. 28 165

    [29]

    Wan P, Zhan Y J, Li X C, Wang Y H 2011 Acta Phys. Sin. 60 040502 (in Chinese)[万频, 詹宜巨, 李学聪, 王永华2011 物理学报60 040502]

    [30]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese)[冷永刚, 王太勇2003 物理学报52 2432]

    [31]

    Leng Y G, Wang T Y, Qin X D, Li R X, Guo Y 2004 Acta Phys. Sin. 53 0717 (in Chinese)[冷永刚, 王太勇, 秦旭达, 李瑞欣, 郭焱2004 物理学报53 0717]

    [32]

    Leng Y G 2009 Acta Phys. Sin. 58 5196 (in Chinese)[冷永刚2009 物理学报58 5196]

    [33]

    Lin M, Huang Y M 2006 Acta Phys. Sin. 55 3277 (in Chinese)[林敏, 黄咏梅2006 物理学报55 3277]

    [34]

    Jiao S B, He T 2013 Computer Engineering and Applications (in Chinese) [焦尚彬, 何童2013 计算机工程与应用]

    [35]

    L Y, Wang C Y, Tian Y, Hou B 2010 China Academic Journal Electronic Publishing House 8 40 (in Chinese)[吕运, 王长悦, 田野, 侯彪2010 机械与电子8 40]

  • [1]

    Stocks N G, Stein N D, McClintock P V E 1993 J. Phys. A: Math. Gen. 26 L385

    [2]

    Vilar J M G, Rub J M 1996 Phys. Rev. Lett. 77 2863

    [3]

    vstigneev M, Reimann P, Pankov V, Prince R H 2004 Europhys. Lett. 65 7

    [4]

    Zhang W, Xiang B R 2006 Talanta 70 267

    [5]

    Guo F, Huang Z Q, Fan Y, Li S F, Zhang Y 2009 Chin. Phys. Lett. 26 100504

    [6]

    Zhou B C, Xu W 2009 Chaos, Solitons & Fractals 40 401

    [7]

    He C D, Xu W, Yue X L 2010 Acta Phys. Sin. 59 5276 (in Chinese)[何成娣, 徐伟, 岳晓乐2010 物理学报59 5276]

    [8]

    Zhou Y R 2011 Chin. Phys. B 20 010501

    [9]

    Li J M, Chen X F, He Z J 2011 Journal of Mechanical Engineering 47 58 (in Chinese) [李继猛, 陈雪峰, 何正嘉 2011 机械工程学报47 58]

    [10]

    Yao M L, Xu W, Ning L J 2012 Nonlinear Dyn. 67 329

    [11]

    Zhang X Y, Xu W, Zhou B C 2012 Acta Phys. Sin. 61 030501 (in Chinese)[张晓燕, 徐伟, 周丙常2012 物理学报 61 030501]

    [12]

    Kang Y M, Xu J X, Xie Y 2003 Acta Phys. Sin. 52 2712 (in Chinese)[康艳梅, 徐健学, 谢勇2003 物理学报52 2712]

    [13]

    Guo F 2009 Physica A 388 2315

    [14]

    Guo F, Luo X D, Li S F, Zhou Y R 2010 Chin. Phys. B 19 080504

    [15]

    Qiu T S, Zhang X X, Li X B, Sun Y M 2004 Statistical Signal Processing–Non-Gaussian Signal Processing and its Applications (Beijing: Publishing House of Electronics Industry) p140 (in Chinese) [邱天爽, 张旭秀, 李小兵, 孙永梅2004 统计信号处理–非高斯信号处理及其应用(北京: 电子工业出版社) 第140 页]

    [16]

    Dybiec B, Gudowska-Nowak E 2006 Acta Phys. Pol. B 37 1479

    [17]

    Zeng L Z, Bao R H, Xu B H 2007 J. Phys. A: Math. Theor. 40 7175

    [18]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China 16 638 (in Chinese) [张文英, 王自力, 张卫东2009 控制工程16 638]

    [19]

    Zeng L Z, Xu B H 2010 Journal of physics A: Statistical Mechanics and its Applications 22 5128

    [20]

    Srokowski T 2012 Eur. Phys. J. B 85 1

    [21]

    Zhang G L, L X L, Kang Y M 2012 Acta Phys. Sin. 61 040501 (in Chinese)[张广丽, 吕希路, 康艳梅2012 物理学报61 040501]

    [22]

    Dybiec B 2009 Phys. Rev. E 80 041111

    [23]

    Hu N Q 2012 Stochastic Resonance Weak Characteristic Signal Detection Theory and Methods (Beijing: National Defense Industry Press) p60 (in Chinese) [胡茑庆2012 随机共振微弱特征信号检测理论与方法(北京: 国防工业出版社) 第60 页]

    [24]

    Jiao S B, Ren C, Huang W C, Liang Y M 2013 Acta Phys. Sin. 62 210501 (in Chinese)[焦尚彬, 任超, 黄伟超, 梁炎明2013 物理学报62 210501]

    [25]

    Tang Y, Zou W, Lu J Q, Kurths J 2012 Phys. Rev. E 85 1539

    [26]

    Liang Y J, Chen W 2013 Signal Processing 93 242

    [27]

    Agudov N V, Krichigin A V 2008 Radiophysics and Quantum Electronics 51 812

    [28]

    Weron R 1996 Statist. Prob. Lett. 28 165

    [29]

    Wan P, Zhan Y J, Li X C, Wang Y H 2011 Acta Phys. Sin. 60 040502 (in Chinese)[万频, 詹宜巨, 李学聪, 王永华2011 物理学报60 040502]

    [30]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese)[冷永刚, 王太勇2003 物理学报52 2432]

    [31]

    Leng Y G, Wang T Y, Qin X D, Li R X, Guo Y 2004 Acta Phys. Sin. 53 0717 (in Chinese)[冷永刚, 王太勇, 秦旭达, 李瑞欣, 郭焱2004 物理学报53 0717]

    [32]

    Leng Y G 2009 Acta Phys. Sin. 58 5196 (in Chinese)[冷永刚2009 物理学报58 5196]

    [33]

    Lin M, Huang Y M 2006 Acta Phys. Sin. 55 3277 (in Chinese)[林敏, 黄咏梅2006 物理学报55 3277]

    [34]

    Jiao S B, He T 2013 Computer Engineering and Applications (in Chinese) [焦尚彬, 何童2013 计算机工程与应用]

    [35]

    L Y, Wang C Y, Tian Y, Hou B 2010 China Academic Journal Electronic Publishing House 8 40 (in Chinese)[吕运, 王长悦, 田野, 侯彪2010 机械与电子8 40]

  • [1] 焦尚彬, 任超, 黄伟超, 梁炎明. 稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象. 物理学报, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [2] 万频, 李学聪, 王永华, 詹宜巨. 一种单稳随机共振系统信噪比增益的数值研究. 物理学报, 2011, 60(4): 040502. doi: 10.7498/aps.60.040502
    [3] 焦尚彬, 杨蓉, 张青, 谢国. α稳定噪声驱动的非对称双稳随机共振现象. 物理学报, 2015, 64(2): 020502. doi: 10.7498/aps.64.020502
    [4] 张刚, 胡韬, 张天骐. Levy噪声激励下的幂函数型单稳随机共振特性分析. 物理学报, 2015, 64(22): 220502. doi: 10.7498/aps.64.220502
    [5] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测. 物理学报, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
    [6] 焦尚彬, 孙迪, 刘丁, 谢国, 吴亚丽, 张青. 稳定噪声下一类周期势系统的振动共振. 物理学报, 2017, 66(10): 100501. doi: 10.7498/aps.66.100501
    [7] 范剑, 赵文礼, 张明路, 檀润华, 王万强. 随机共振动力学机理及其微弱信号检测方法的研究. 物理学报, 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [8] 朱光起, 丁珂, 张宇, 赵远. 基于随机共振进行弱信号探测的实验研究. 物理学报, 2010, 59(5): 3001-3006. doi: 10.7498/aps.59.3001
    [9] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测. 物理学报, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [10] 范剑, 赵文礼, 王万强. 基于Duffing振子的微弱周期信号混沌检测性能研究. 物理学报, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [11] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法. 物理学报, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [12] 刘剑鸣, 杨霞, 高跃龙, 刘福才. 类Liu系统在水声微弱信号检测中的应用研究. 物理学报, 2016, 65(7): 070501. doi: 10.7498/aps.65.070501
    [13] 王林泽, 赵文礼, 陈旋. 基于随机共振原理的分段线性模型的理论分析与实验研究. 物理学报, 2012, 61(16): 160501. doi: 10.7498/aps.61.160501
    [14] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测. 物理学报, 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [15] 吴勇峰, 黄绍平, 金国彬. 基于耦合Duffing振子的局部放电信号检测方法研究. 物理学报, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [16] 曾喆昭, 周勇, 胡凯. 基于扩展型Duffing振子的局部放电信号检测方法研究. 物理学报, 2015, 64(7): 070505. doi: 10.7498/aps.64.070505
    [17] 吴勇峰, 张世平, 孙金玮, Peter Rolfe, 李智. 脉冲激励下环形耦合Duffing振子间的瞬态同步突变现象. 物理学报, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [18] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [19] 黄泽徽, 李亚安, 陈哲, 刘恋. 基于多尺度熵的Duffing混沌系统阈值确定方法*. 物理学报, 2020, (): 000500. doi: 10.7498/aps.69.20191642
    [20] 贾美美, 蒋浩刚, 李文静. 新Chua多涡卷混沌吸引子的产生及应用. 物理学报, 2019, 68(13): 130503. doi: 10.7498/aps.68.20182183
  • 引用本文:
    Citation:
计量
  • 文章访问数:  818
  • PDF下载量:  549
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-22
  • 修回日期:  2013-12-25
  • 刊出日期:  2014-04-05

乘性和加性α稳定噪声环境下的过阻尼单稳随机共振现象

  • 1. 西安理工大学自动化与信息工程学院, 西安 710048
    基金项目: 

    国家自然科学基金(批准号:61304204)和陕西省教育厅自然科学专项基金(批准号:2013JK1050)资助的课题.

摘要: 本文将α 稳定噪声与单稳随机共振系统相结合,研究了乘性和加性α 稳定噪声环境下的过阻尼单稳随机共振现象,探究了α 稳定噪声特征指数α(0 α ≤ 2)、对称参数β(-1 ≤ β ≤ 1),单稳系统参数a及乘性α 稳定噪声放大系数D对共振输出效应的作用规律. 研究结果表明,在不同分布的α 稳定噪声环境下,在一定范围内通过调节a或D均可诱导随机共振来实现单个或多个高、低频微弱信号的检测,且a和D分别存在一个最优值可使系统产生最佳的随机共振效应;不同α 或β 均可对系统共振输出效应产生规律性的影响,且α 或β在高、低频微弱信号检测中的作用规律相同;在研究α 稳定噪声环境下单、多频单稳随机共振现象时所得结论是相同的. 本研究结果可为实现α 稳定噪声环境下单稳随机共振系统参数的自适应调节奠定基础.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回