搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1,4-丁二硫醇分子器件电输运性质的力敏特性研究

刘然 包德亮 焦扬 万令文 李宗良 王传奎

1,4-丁二硫醇分子器件电输运性质的力敏特性研究

刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎
PDF
导出引用
导出核心图
  • 基于杂化密度泛函理论,研究了1,4-丁二硫醇分子体系的结构随电极作用力的变化及拉断过程;并利用弹性散射格林函数方法进一步计算了不同电极作用力下分子体系的电输运特性. 结果显示,界面结构不同,拉断分子体系所用的拉力也不同:分子末端硫原子处于Au(111)面的空位上方时,拉断分子体系需约1.75 nN的拉力;若金电极表面存在孤立金原子与1,4-丁二硫醇分子末端的硫原子相连,拉断分子体系只需约1.0 nN的力,且伴有孤立金原子被拉出. 两种情况分别与不同实验测量相符合. 分子在压缩过程中发生扭曲并引起表面金原子滑移,然而压缩扭曲过程与拉伸回复过程不可逆. 电极拉力约为0.7–0.8 nN时,分子体系在不同界面构型下以及在不同扭转状态下,电导都出现极小值,这与实验结论一致. 分子的末端原子与电极间耦合强度随电极作用力的变化是引起分子体系电导变化的主要因素. 实验在0.8 nN附近同时测得较小概率的高电导值与双分子导电有关.
    • 基金项目: 国家自然科学基金(批准号:11374195,11304172)、山东省自然科学基金(批准号:ZR2013FM006)和山东省科技计划项目(批准号:J13LJ01,J12LJ04)资助的课题.
    [1]

    Xu Y, Fang C, Cui B, Ji G, Zhai Y, Liu D S 2011 Appl. Phys. Lett. 99 043304

    [2]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 140504 (in Chinese) [柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣 2013 物理学报 62 140504]

    [3]

    Parameswaran R, Widawsky J R, Vázquez H, Park Y S, Boardman B M, Nuckolls C, Steigerwald M L, Hybertsen M S, Venkataraman L 2010 J. Phys. Chem. Lett. 1 2114

    [4]

    Ma G, Shen X, Sun L, Zhang R, Wei P, Sanvito S, Hou S M 2010 Nanotechnology 21 495202

    [5]

    Zhang G P, Hu G C, Song Y, Li Z L, Wang C K 2012 J. Phys. Chem. C 116 22009

    [6]

    Li Z L, Zou B, Wang C K, Luo Y 2006 Phys. Rev. B 73 075326

    [7]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449

    [8]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003

    [9]

    Fu X X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [10]

    Wang G, Kim T W, Lee T 2011 J. Mater. Chem. 21 18117

    [11]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese) [安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 物理学报 59 2010]

    [12]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185

    [13]

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303 (in Chinese) [郭超, 张振华, 潘金波, 张俊俊 2011 物理学报 60 117303]

    [14]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [15]

    Morita T, Lindsay S 2007 J. Am. Chem. Soc. 129 7262

    [16]

    Seferos D S, Blum A S, Kushmerick J G, Bazan G C 2006 J. Am. Chem. Soc. 128 11260

    [17]

    Cohen H, Nogues C, Naaman R, Porath D 2005 Proc. Natl. Acad. Sci. USA 102 11589

    [18]

    Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [19]

    Nef C, Frederix P L T M, Brunner J, Schonenberger C, Calame M 2012 Nanotechnology 23 365201

    [20]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518

    [21]

    Pobelov I V, Mészáros G, Yoshida K, Mishchenko A, Gulcur M, Bryce M R, Wandlowski T 2012 J. Phys. Condens. Matter 24 164210

    [22]

    Xu B, Tao N J 2003 Science 301 1221

    [23]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [24]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [25]

    Tsutsui M, Taniguchi M 2012 Sensors 12 7259

    [26]

    Dell E J, Capozzi B, DuBay K H, Berkelbach T C, Moreno J R, Reichman D R, Venkataraman L, Campos L M 2013 J. Am. Chem. Soc. 135 11724

    [27]

    Huang Z, Chen F, Bennett P A, Tao N 2007 J. Am. Chem. Soc. 129 13225

    [28]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nature Mater. 11 872

    [29]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586

    [30]

    Aradhya S V, Venkataraman L 2013 Nature Nanotech. 8 399

    [31]

    Xu B, Xiao X, Tao N J 2003 J. Am. Chem. Soc. 125 16164

    [32]

    Hu W, Li Z L, Ma Y, Li Y D, Wang C K 2011 Acta Phys. Sin. 60 017304 (in Chinese) [胡伟, 李宗良, 马勇, 李英德, 王传奎 2011 物理学报 60 017304]

    [33]

    Li Z L, Wang C K, Luo Y, Xue Q K 2004 Acta Phys. Sin. 53 1490 (in Chinese) [李宗良, 王传奎, 罗毅, 薛其坤 2004 物理学报 53 1490]

    [34]

    Frisch M J, Trucks G W, Schlegel H B et al 2004 Gaussian 03, Revision E.01, Caussian, Inc., Wallingford CT

    [35]

    Jiang J, Wang C K, Luo Y 2006 QCME-V1.1 (Quantum Chemistry for Molecular Electronics), Royal Institute of Technology, Sweden

  • [1]

    Xu Y, Fang C, Cui B, Ji G, Zhai Y, Liu D S 2011 Appl. Phys. Lett. 99 043304

    [2]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 140504 (in Chinese) [柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣 2013 物理学报 62 140504]

    [3]

    Parameswaran R, Widawsky J R, Vázquez H, Park Y S, Boardman B M, Nuckolls C, Steigerwald M L, Hybertsen M S, Venkataraman L 2010 J. Phys. Chem. Lett. 1 2114

    [4]

    Ma G, Shen X, Sun L, Zhang R, Wei P, Sanvito S, Hou S M 2010 Nanotechnology 21 495202

    [5]

    Zhang G P, Hu G C, Song Y, Li Z L, Wang C K 2012 J. Phys. Chem. C 116 22009

    [6]

    Li Z L, Zou B, Wang C K, Luo Y 2006 Phys. Rev. B 73 075326

    [7]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449

    [8]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003

    [9]

    Fu X X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [10]

    Wang G, Kim T W, Lee T 2011 J. Mater. Chem. 21 18117

    [11]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese) [安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 物理学报 59 2010]

    [12]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185

    [13]

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303 (in Chinese) [郭超, 张振华, 潘金波, 张俊俊 2011 物理学报 60 117303]

    [14]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [15]

    Morita T, Lindsay S 2007 J. Am. Chem. Soc. 129 7262

    [16]

    Seferos D S, Blum A S, Kushmerick J G, Bazan G C 2006 J. Am. Chem. Soc. 128 11260

    [17]

    Cohen H, Nogues C, Naaman R, Porath D 2005 Proc. Natl. Acad. Sci. USA 102 11589

    [18]

    Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [19]

    Nef C, Frederix P L T M, Brunner J, Schonenberger C, Calame M 2012 Nanotechnology 23 365201

    [20]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518

    [21]

    Pobelov I V, Mészáros G, Yoshida K, Mishchenko A, Gulcur M, Bryce M R, Wandlowski T 2012 J. Phys. Condens. Matter 24 164210

    [22]

    Xu B, Tao N J 2003 Science 301 1221

    [23]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [24]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [25]

    Tsutsui M, Taniguchi M 2012 Sensors 12 7259

    [26]

    Dell E J, Capozzi B, DuBay K H, Berkelbach T C, Moreno J R, Reichman D R, Venkataraman L, Campos L M 2013 J. Am. Chem. Soc. 135 11724

    [27]

    Huang Z, Chen F, Bennett P A, Tao N 2007 J. Am. Chem. Soc. 129 13225

    [28]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nature Mater. 11 872

    [29]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586

    [30]

    Aradhya S V, Venkataraman L 2013 Nature Nanotech. 8 399

    [31]

    Xu B, Xiao X, Tao N J 2003 J. Am. Chem. Soc. 125 16164

    [32]

    Hu W, Li Z L, Ma Y, Li Y D, Wang C K 2011 Acta Phys. Sin. 60 017304 (in Chinese) [胡伟, 李宗良, 马勇, 李英德, 王传奎 2011 物理学报 60 017304]

    [33]

    Li Z L, Wang C K, Luo Y, Xue Q K 2004 Acta Phys. Sin. 53 1490 (in Chinese) [李宗良, 王传奎, 罗毅, 薛其坤 2004 物理学报 53 1490]

    [34]

    Frisch M J, Trucks G W, Schlegel H B et al 2004 Gaussian 03, Revision E.01, Caussian, Inc., Wallingford CT

    [35]

    Jiang J, Wang C K, Luo Y 2006 QCME-V1.1 (Quantum Chemistry for Molecular Electronics), Royal Institute of Technology, Sweden

  • [1] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [2] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [3] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [4] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [5] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [6] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [7] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [8] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [9] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [10] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [11] 杨建刚, 胡春波, 朱小飞, 李悦, 胡旭, 邓哲. 粉末颗粒气力加注特性实验研究. 物理学报, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [12] 钟哲强, 张彬, 母杰, 王逍. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200034
    [13] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [14] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [15] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [16] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [17] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
  • 引用本文:
    Citation:
计量
  • 文章访问数:  493
  • PDF下载量:  10097
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-24
  • 修回日期:  2013-12-01
  • 刊出日期:  2014-03-20

1,4-丁二硫醇分子器件电输运性质的力敏特性研究

  • 1. 山东师范大学物理与电子科学学院, 济南 250014
    基金项目: 

    国家自然科学基金(批准号:11374195,11304172)、山东省自然科学基金(批准号:ZR2013FM006)和山东省科技计划项目(批准号:J13LJ01,J12LJ04)资助的课题.

摘要: 基于杂化密度泛函理论,研究了1,4-丁二硫醇分子体系的结构随电极作用力的变化及拉断过程;并利用弹性散射格林函数方法进一步计算了不同电极作用力下分子体系的电输运特性. 结果显示,界面结构不同,拉断分子体系所用的拉力也不同:分子末端硫原子处于Au(111)面的空位上方时,拉断分子体系需约1.75 nN的拉力;若金电极表面存在孤立金原子与1,4-丁二硫醇分子末端的硫原子相连,拉断分子体系只需约1.0 nN的力,且伴有孤立金原子被拉出. 两种情况分别与不同实验测量相符合. 分子在压缩过程中发生扭曲并引起表面金原子滑移,然而压缩扭曲过程与拉伸回复过程不可逆. 电极拉力约为0.7–0.8 nN时,分子体系在不同界面构型下以及在不同扭转状态下,电导都出现极小值,这与实验结论一致. 分子的末端原子与电极间耦合强度随电极作用力的变化是引起分子体系电导变化的主要因素. 实验在0.8 nN附近同时测得较小概率的高电导值与双分子导电有关.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回