搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子激发中的表面等离激元增强效应

孙雪菲 王鹿霞

分子激发中的表面等离激元增强效应

孙雪菲, 王鹿霞
PDF
导出引用
  • 金属纳米粒子的表面等离激元增强效应是纳米科学领域的一个研究热点. 针对染料分子与金属纳米粒子的耦合系统,应用偶极-偶极近似计算分子与金属纳米粒子的库仑相互作用,并应用密度矩阵理论描述在不同极化方向的电场作用下的电荷输运过程,分析了分子与金属纳米粒子在不同相对位置下分子激发态的动力学过程,发现表面等离激元的增强效应与分子和金属钠米粒子的相对位置以及等离激元的耗散系数有密切关系,详细讨论了分子与金属纳米粒子间的耦合强度、外场的极化方向、等离激元的寿命及共振激发条件对分子激发态及表面等离激元增强的影响,分析了分子-金属纳米粒子耦合系统中表面等离激元增强效应的物理本质.
    • 基金项目: 国家自然科学基金(批准号:11174029)和中央高校基本科研业务费资助的课题.
    [1]

    Halas N J 2012 Nano Lett. 10 3816

    [2]

    Lance K K, Eduardo C, Zhao L L, George C 2003 Phys. Rev. B 107 668

    [3]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese)[王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [4]

    Jackson J D, Fox R F 1999 Am J Phys. 67 841

    [5]

    Jin Y R, Chen Z, Wang Z L 2013 Sci. China-Phys. 9 1022 [靳悦荣, 陈卓, 王振林 2013 中国科学:物理学 009 1022]

    [6]

    Xu L M, Zhang Z L, Cai X Y, Zheng H R 2009 Chin. J. Lumin. 30 373 (in Chinese)[徐良敏, 张正龙, 蔡晓燕, 郑海荣 2009 发光学报 30 373]

    [7]

    Noginov M, Zhu G, Belgrave A, Bakker R, Shalaev V, Narimanov E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110

    [8]

    Huang Q, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y, Wang J 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京 2009 物理学报 58 1980]

    [9]

    Gregory V H 2012 J. Phys. Chem. Lett. 3 1421

    [10]

    Hägglund C, Peter A S 2012 J. Phys. Chem. Lett. 3 1275

    [11]

    May V, Khn O 2003 Charge and Energy Transfer Dynamics in Molecular Systems (Berlin: WILEY-VCH Verlag Berlin CmbH) 99

    [12]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [13]

    May V, Khn O 2008 Phys. Rev. B 77 115439

    [14]

    May V, Megow J, Zelinskyi I 2012 Proc. SPIE 8424 842403

    [15]

    Zelinskyy Y, Zhang Y, May V 2012 J. Chem. Phys. A 116 11330

    [16]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese)[吴大建, 刘晓骏 2008 物理学报 57 5138]

    [17]

    Tan Z, Wang L X 2013 Acta Phys. Sin. 62 237303 (in Chinese)[谭姿, 王鹿霞 2013 物理学报 62 237303]

    [18]

    Zelinskyy Y, May V 2011 Nano Lett. 12 446

    [19]

    Khl A, Domcke W 2002 J. Chem. Phys. 116 263

    [20]

    May V 2002 Phys. Rev. B 66 245411

    [21]

    Weick G, Ingold G-L, Jalabert R A, Weinmann D 2006 Phys. Rev. B 74 165421

    [22]

    Gerchikov L, Guet C, Ipatov A 2002 Phys. Rev. A 66 053202

    [23]

    Weick G, Ingold G-L, Weinmann D, Jalabert R A 2007 Eur. Phys. J. D 44 359

    [24]

    Weick G, Molina R A, Weinmann D, Jalabert R A 2005 Phys. Rev. B 72 115410

    [25]

    Ramakrishna S, Willig F, May V 2000 Phys. Rev. B 62 16330

  • [1]

    Halas N J 2012 Nano Lett. 10 3816

    [2]

    Lance K K, Eduardo C, Zhao L L, George C 2003 Phys. Rev. B 107 668

    [3]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese)[王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [4]

    Jackson J D, Fox R F 1999 Am J Phys. 67 841

    [5]

    Jin Y R, Chen Z, Wang Z L 2013 Sci. China-Phys. 9 1022 [靳悦荣, 陈卓, 王振林 2013 中国科学:物理学 009 1022]

    [6]

    Xu L M, Zhang Z L, Cai X Y, Zheng H R 2009 Chin. J. Lumin. 30 373 (in Chinese)[徐良敏, 张正龙, 蔡晓燕, 郑海荣 2009 发光学报 30 373]

    [7]

    Noginov M, Zhu G, Belgrave A, Bakker R, Shalaev V, Narimanov E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110

    [8]

    Huang Q, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y, Wang J 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京 2009 物理学报 58 1980]

    [9]

    Gregory V H 2012 J. Phys. Chem. Lett. 3 1421

    [10]

    Hägglund C, Peter A S 2012 J. Phys. Chem. Lett. 3 1275

    [11]

    May V, Khn O 2003 Charge and Energy Transfer Dynamics in Molecular Systems (Berlin: WILEY-VCH Verlag Berlin CmbH) 99

    [12]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [13]

    May V, Khn O 2008 Phys. Rev. B 77 115439

    [14]

    May V, Megow J, Zelinskyi I 2012 Proc. SPIE 8424 842403

    [15]

    Zelinskyy Y, Zhang Y, May V 2012 J. Chem. Phys. A 116 11330

    [16]

    Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese)[吴大建, 刘晓骏 2008 物理学报 57 5138]

    [17]

    Tan Z, Wang L X 2013 Acta Phys. Sin. 62 237303 (in Chinese)[谭姿, 王鹿霞 2013 物理学报 62 237303]

    [18]

    Zelinskyy Y, May V 2011 Nano Lett. 12 446

    [19]

    Khl A, Domcke W 2002 J. Chem. Phys. 116 263

    [20]

    May V 2002 Phys. Rev. B 66 245411

    [21]

    Weick G, Ingold G-L, Jalabert R A, Weinmann D 2006 Phys. Rev. B 74 165421

    [22]

    Gerchikov L, Guet C, Ipatov A 2002 Phys. Rev. A 66 053202

    [23]

    Weick G, Ingold G-L, Weinmann D, Jalabert R A 2007 Eur. Phys. J. D 44 359

    [24]

    Weick G, Molina R A, Weinmann D, Jalabert R A 2005 Phys. Rev. B 72 115410

    [25]

    Ramakrishna S, Willig F, May V 2000 Phys. Rev. B 62 16330

  • 引用本文:
    Citation:
计量
  • 文章访问数:  3073
  • PDF下载量:  672
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-08
  • 修回日期:  2014-01-27
  • 刊出日期:  2014-05-05

分子激发中的表面等离激元增强效应

  • 1. 北京科技大学数理学院物理系, 北京 100083
    基金项目: 

    国家自然科学基金(批准号:11174029)和中央高校基本科研业务费资助的课题.

摘要: 金属纳米粒子的表面等离激元增强效应是纳米科学领域的一个研究热点. 针对染料分子与金属纳米粒子的耦合系统,应用偶极-偶极近似计算分子与金属纳米粒子的库仑相互作用,并应用密度矩阵理论描述在不同极化方向的电场作用下的电荷输运过程,分析了分子与金属纳米粒子在不同相对位置下分子激发态的动力学过程,发现表面等离激元的增强效应与分子和金属钠米粒子的相对位置以及等离激元的耗散系数有密切关系,详细讨论了分子与金属纳米粒子间的耦合强度、外场的极化方向、等离激元的寿命及共振激发条件对分子激发态及表面等离激元增强的影响,分析了分子-金属纳米粒子耦合系统中表面等离激元增强效应的物理本质.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回