搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固相硝基甲烷相变的第一性原理计算

张力 陈朗

固相硝基甲烷相变的第一性原理计算

张力, 陈朗
PDF
导出引用
导出核心图
  • 研究极端条件下固相分子晶体含能材料的相变机理,对于人们认识固相含能材料的爆轰反应有着重要的意义. 采用基于校正密度泛函理论的第一性原理方法研究固相硝基甲烷在静水压下的行为. 分析晶格参数a,b和c 轴随压强的变化,发现在1 GPa到12 GPa时晶格参数出现不连续的变化,表明体系发生相变. 在相变时最大的二面角从155.3°增加到177.5°,二面角的增加限制CH3官能团自由旋转,使得C–N和C–H键的键长发生变化. 在相变之前,体系主要存在由C–H…O组成的分子间的氢键,而在相变之后存在分子内的H…O和分子间C–H…O组成的氢键. 此外通过对硝基甲烷体系的电子结构进行计算,发现相变会影响带隙随压强的变化,而且还会影响费米能级附近的态密度结构.
    [1]

    Ou Y X 2006 Explosives (Beijing: Beijing Institute of Technology Press) p5 (in Chinese) [欧育湘 2006 炸药学(北京:北京理工大学出版社)第5页]

    [2]

    Zhou T T, Huang FL 2012 Acta Phys. Sin. 61 246501 (in Chinese)[周婷婷, 黄风雷 2012 物理学报 61 246501]

    [3]

    Zhang B P, Zhang Q M, Huang F L 2009 Detonation Physics (Beijing: Weapon Industry Press) p140 (in Chinese) [张宝平, 张庆明, 黄风雷 2009 爆轰物理学(北京:兵器工业出版社)第140页]

    [4]

    Trevino S F, Rymes W. H 1980 J. Chem. Phys. 73 3001

    [5]

    Cromer D T, Ryan R R, Schiferl D 1985 J. Phys. Chem. 89 2315

    [6]

    Courtecuisse S, Cansell F, Fabre D, Petitet J P 1995 J. Chem. Phys. 102 968

    [7]

    Courtecuisse S, Cansell F, Fabre D, Petitet J P 1998 J. Chem. Phys. 108 7350

    [8]

    Citroni M, Datchi F, Bini R, Di Vaira M, Pruzan P, Canny B, Schettino V 2008 J. Phys. Chem. B 112 1095

    [9]

    Pinan Lucarré J, Ouillon R, Canny B, Pruzan P, Ranson P 2003 J. Raman. Spectrosc. 34 819

    [10]

    Margetis D, Kaxiras E, Elstner M, Frauenhim Th, Manaa M R 2002 J. Chem. Phys. 117 788

    [11]

    Reed E J, Jannopulos J D, Fried L E 2000 Phys. Rev. B 62 16500

    [12]

    Liu H, Zhao J, Wei D, Gong Z 2006 J. Chem. Phys. 124 124501

    [13]

    Sorescu D C, Rice B M, Thompson D L J 2000 Phys. Chem. B 104 8406

    [14]

    Manaa M R, Reed E J, Fried L E, Galli G, Gygi F 2004 J. Chem. Phys. 120 10146

    [15]

    Reed E J, Manaa M R, Fried L E, Glaesemann K R, Joannopoulos J D 2007 Nature Physics 4 72

    [16]

    Xu J C, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese)[徐京城, 赵纪军 2009 物理学报 58 4144]

    [17]

    Chang J, Lian P, Wei D, Chen X, Zhang Q, Gong Z 2010 Phys. Rev. Lett. 105 188302

    [18]

    Zhang L, Chen L 2013 Acta Phys. Sin. 62 138201 (in Chinese) [张力, 陈朗 2013 物理学报 62 138201]

    [19]

    Byrd E F, Rice B M 2007 J. Phys. Chem. C 111 2787

    [20]

    Conroy M W, Oleynik I I, Zybin S V, White C T 2008 Phys. Rev. B 77 94107

    [21]

    Dion M, Rydberg H, Schröder E, Langreth D C, Lundqvist B I 2004 Phys. Rev. Lett. 92 246401

    [22]

    Langreth D C, Lundqvist B I, Chakarova-Kack S D, Cooper V R, Dion M, Hyldgaard P, Kelkkanen A, Kleis J, Kong L Z, Li S, Moses P G, Murray E, Puzder A, Rydberg H, Schroder E, Thonhauser T 2009 J. Phys. : Condens. Matter 21 084203

    [23]

    Lin I C, Coutinho-Neto M D, Felsenheimer C, von Lilienfeld O A, Tavernelli I, Rothlisberger U 2007 Phys. Rev. B 75 205131

    [24]

    Tavernelli I, Lin I C, Rothlisberger U 2009 Phys. Rev. B 79 45106

    [25]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [26]

    Neumann M A, Perrin M A 2005 J. Phys. Chem. B 109 15531

    [27]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [28]

    Conroy M W, Budzevich M M, Lin Y, Oleynik I I, White C T 2009 Aip Conf. Proc. 1195 805

    [29]

    Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524

    [30]

    Conroy M W, Oleynik I I, Zybin S V, White C T 2009 J. Phys. Chem. A 113 3610

    [31]

    Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734

    [32]

    Landerville A C, Conroy M W, Budzevich M M, Lin Y, White C T, Oleynik I I 2010 Appl. Phys. Lett. 97 251908

    [33]

    Appalakondaiah S, Vaitheeswaran G, Lebègue S 2013 J. Chem. Phys. 138 184705

    [34]

    Hamann D R, Schlter M, Chiang C 1979 Phys, Rev. Lett. 43 1494

    [35]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [36]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C 2005 Zeitschrift fr Kristallographie 220 567

    [37]

    Murnaghan F D 1944 PNAS 30 244

    [38]

    Olinger B, Halleck P M 1975 J. Chem. Phys. 62 94

    [39]

    Olinger B, Halleck P M, Cady H H 1975 J. Chem. Phys. 62 4480

    [40]

    Yarger F L, Olinger B 1986 J. Chem. Phys. 85 1534

    [41]

    Ortmann F, Bechstedt F, Schmidt W G 2006 Phys. Rev. B 73 205101

    [42]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [43]

    Sorescu D C, Rice B M, Thompson D L 1999 J. Phys. Chem. A 103 989

    [44]

    Von Dreele R B 1995 High Pressure Res. 14 13

  • [1]

    Ou Y X 2006 Explosives (Beijing: Beijing Institute of Technology Press) p5 (in Chinese) [欧育湘 2006 炸药学(北京:北京理工大学出版社)第5页]

    [2]

    Zhou T T, Huang FL 2012 Acta Phys. Sin. 61 246501 (in Chinese)[周婷婷, 黄风雷 2012 物理学报 61 246501]

    [3]

    Zhang B P, Zhang Q M, Huang F L 2009 Detonation Physics (Beijing: Weapon Industry Press) p140 (in Chinese) [张宝平, 张庆明, 黄风雷 2009 爆轰物理学(北京:兵器工业出版社)第140页]

    [4]

    Trevino S F, Rymes W. H 1980 J. Chem. Phys. 73 3001

    [5]

    Cromer D T, Ryan R R, Schiferl D 1985 J. Phys. Chem. 89 2315

    [6]

    Courtecuisse S, Cansell F, Fabre D, Petitet J P 1995 J. Chem. Phys. 102 968

    [7]

    Courtecuisse S, Cansell F, Fabre D, Petitet J P 1998 J. Chem. Phys. 108 7350

    [8]

    Citroni M, Datchi F, Bini R, Di Vaira M, Pruzan P, Canny B, Schettino V 2008 J. Phys. Chem. B 112 1095

    [9]

    Pinan Lucarré J, Ouillon R, Canny B, Pruzan P, Ranson P 2003 J. Raman. Spectrosc. 34 819

    [10]

    Margetis D, Kaxiras E, Elstner M, Frauenhim Th, Manaa M R 2002 J. Chem. Phys. 117 788

    [11]

    Reed E J, Jannopulos J D, Fried L E 2000 Phys. Rev. B 62 16500

    [12]

    Liu H, Zhao J, Wei D, Gong Z 2006 J. Chem. Phys. 124 124501

    [13]

    Sorescu D C, Rice B M, Thompson D L J 2000 Phys. Chem. B 104 8406

    [14]

    Manaa M R, Reed E J, Fried L E, Galli G, Gygi F 2004 J. Chem. Phys. 120 10146

    [15]

    Reed E J, Manaa M R, Fried L E, Glaesemann K R, Joannopoulos J D 2007 Nature Physics 4 72

    [16]

    Xu J C, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese)[徐京城, 赵纪军 2009 物理学报 58 4144]

    [17]

    Chang J, Lian P, Wei D, Chen X, Zhang Q, Gong Z 2010 Phys. Rev. Lett. 105 188302

    [18]

    Zhang L, Chen L 2013 Acta Phys. Sin. 62 138201 (in Chinese) [张力, 陈朗 2013 物理学报 62 138201]

    [19]

    Byrd E F, Rice B M 2007 J. Phys. Chem. C 111 2787

    [20]

    Conroy M W, Oleynik I I, Zybin S V, White C T 2008 Phys. Rev. B 77 94107

    [21]

    Dion M, Rydberg H, Schröder E, Langreth D C, Lundqvist B I 2004 Phys. Rev. Lett. 92 246401

    [22]

    Langreth D C, Lundqvist B I, Chakarova-Kack S D, Cooper V R, Dion M, Hyldgaard P, Kelkkanen A, Kleis J, Kong L Z, Li S, Moses P G, Murray E, Puzder A, Rydberg H, Schroder E, Thonhauser T 2009 J. Phys. : Condens. Matter 21 084203

    [23]

    Lin I C, Coutinho-Neto M D, Felsenheimer C, von Lilienfeld O A, Tavernelli I, Rothlisberger U 2007 Phys. Rev. B 75 205131

    [24]

    Tavernelli I, Lin I C, Rothlisberger U 2009 Phys. Rev. B 79 45106

    [25]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [26]

    Neumann M A, Perrin M A 2005 J. Phys. Chem. B 109 15531

    [27]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [28]

    Conroy M W, Budzevich M M, Lin Y, Oleynik I I, White C T 2009 Aip Conf. Proc. 1195 805

    [29]

    Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524

    [30]

    Conroy M W, Oleynik I I, Zybin S V, White C T 2009 J. Phys. Chem. A 113 3610

    [31]

    Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734

    [32]

    Landerville A C, Conroy M W, Budzevich M M, Lin Y, White C T, Oleynik I I 2010 Appl. Phys. Lett. 97 251908

    [33]

    Appalakondaiah S, Vaitheeswaran G, Lebègue S 2013 J. Chem. Phys. 138 184705

    [34]

    Hamann D R, Schlter M, Chiang C 1979 Phys, Rev. Lett. 43 1494

    [35]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [36]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C 2005 Zeitschrift fr Kristallographie 220 567

    [37]

    Murnaghan F D 1944 PNAS 30 244

    [38]

    Olinger B, Halleck P M 1975 J. Chem. Phys. 62 94

    [39]

    Olinger B, Halleck P M, Cady H H 1975 J. Chem. Phys. 62 4480

    [40]

    Yarger F L, Olinger B 1986 J. Chem. Phys. 85 1534

    [41]

    Ortmann F, Bechstedt F, Schmidt W G 2006 Phys. Rev. B 73 205101

    [42]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [43]

    Sorescu D C, Rice B M, Thompson D L 1999 J. Phys. Chem. A 103 989

    [44]

    Von Dreele R B 1995 High Pressure Res. 14 13

  • [1] 徐京城, 赵纪军. 液态硝基甲烷热分解行为及压力效应的第一性原理研究. 物理学报, 2009, 58(6): 4144-4149. doi: 10.7498/aps.58.4144
    [2] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [3] 张晋鲁, 李玉强, 赵兴宇, 黄以能. 用Weiss分子场理论对有外电场时铁电体系相变特征的研究. 物理学报, 2012, 61(14): 140501. doi: 10.7498/aps.61.140501
    [4] 陈贺胜. 带有2+1味道Wilson费米子的格点量子色动力学在有限温度、有限密度下的相变. 物理学报, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [5] 陈军, 何捷, 林理彬, 宋婷婷. 氧化钒晶体的半导体至金属相变的理论研究. 物理学报, 2010, 59(9): 6480-6486. doi: 10.7498/aps.59.6480
    [6] 吴红琳, 宋云飞, 王阳, 于国洋, 杨延强. 凝聚相材料分子解离动力学的飞秒瞬态光栅光谱研究. 物理学报, 2017, 66(3): 033301. doi: 10.7498/aps.66.033301
    [7] 毛斌斌, 程晨, 陈富州, 罗洪刚. 一维扩展t-J模型中密度-自旋相互作用诱导的相分离. 物理学报, 2015, 64(18): 187105. doi: 10.7498/aps.64.187105
    [8] 岳廷, 何灏, 张星, 李广. La0.55Ca0.45MnO3的电子密度分布变温X射线衍射测量. 物理学报, 2011, 60(5): 057501. doi: 10.7498/aps.60.057501
    [9] 王歆钰, 储瑞江, 魏胜男, 董正超, 仲崇贵, 曹海霞. 应力作用下EuTiO3铁电薄膜电热效应的唯象理论研究. 物理学报, 2015, 64(11): 117701. doi: 10.7498/aps.64.117701
    [10] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [11] L. Gerward, 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [12] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [13] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [14] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [15] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [16] 梁晓琳, 刘志壮, 吕业刚, 龚跃球, 郑学军. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [17] 刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信. 氧相变换热器内压力波动的混沌特性分析. 物理学报, 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [18] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [19] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [20] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究. 物理学报, 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
  • 引用本文:
    Citation:
计量
  • 文章访问数:  883
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-19
  • 修回日期:  2014-01-09
  • 刊出日期:  2014-05-05

固相硝基甲烷相变的第一性原理计算

  • 1. 北京理工大学爆炸科学与技术国家重点实验室, 北京 100081

摘要: 研究极端条件下固相分子晶体含能材料的相变机理,对于人们认识固相含能材料的爆轰反应有着重要的意义. 采用基于校正密度泛函理论的第一性原理方法研究固相硝基甲烷在静水压下的行为. 分析晶格参数a,b和c 轴随压强的变化,发现在1 GPa到12 GPa时晶格参数出现不连续的变化,表明体系发生相变. 在相变时最大的二面角从155.3°增加到177.5°,二面角的增加限制CH3官能团自由旋转,使得C–N和C–H键的键长发生变化. 在相变之前,体系主要存在由C–H…O组成的分子间的氢键,而在相变之后存在分子内的H…O和分子间C–H…O组成的氢键. 此外通过对硝基甲烷体系的电子结构进行计算,发现相变会影响带隙随压强的变化,而且还会影响费米能级附近的态密度结构.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回