搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于递归T矩阵的离散随机散射体散射特性研究

崔帅 张晓娟 方广有

基于递归T矩阵的离散随机散射体散射特性研究

崔帅, 张晓娟, 方广有
PDF
导出引用
导出核心图
  • 本文根据电磁场矢量球波函数多极点展开原理及矢量叠加定理提出了递归T矩阵算法的矢量形式,并且基于矢量递归T矩阵算法建立了多散射球模拟离散随机散射体散射的三维电磁散射模型. 通过计算不同尺寸、随机分布散射球的散射以及分析散射球间的高阶散射效应,结果表明:矢量递归T矩阵算法具有很高的计算精度,算法中包含多散射体间的高阶散射效应,因此能够精确计算多散射体总的散射效应. 本文所建模型可应用于土壤湿度探测工程中评估地表下掩埋离散随机散射体散射对雷达回波信号产生的影响.
    • 基金项目: 国家自然科学基金(批准号:61172017)资助的课题.
    [1]

    Duan X Y, Moghaddam M 2011 Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International Vancouver, July 24, 2011, p1227

    [2]
    [3]

    Zhang Y, Zhang X J, Fang G Y 2012 Acta Phys. Sin. 61 184203 (in Chinese) [张宇, 张晓娟, 方广有 2012 物理学报 61 184203]

    [4]
    [5]
    [6]

    Zhang Y, Zhang X J, Fang G Y 2013 Acta Phys. Sin. 62 044204 (in Chinese) [张宇, 张晓娟, 方广有 2013 物理学报 62 044204]

    [7]
    [8]

    Qi Y Z, Huang L, Zhang J G, Fang G Y 2013 Acta Phys. Sin. 62 234201 (in Chinese) [齐有政, 黄玲, 张建国, 方广有 2013 物理学报 62 234201]

    [9]
    [10]

    Lin Z W, Xu X, Zhang X J, Fang G Y 2011 Chin. Phys. Lett. 28 014101

    [11]

    Lin Z W, Xu X, Zhang X J, Fang G Y 2011 Chin. Phys. Lett. 28 014102

    [12]
    [13]
    [14]

    Foldy L L 1945 Phys. Rev. 67 107

    [15]

    Lax M 1952 Phys. Rev. 85 261

    [16]
    [17]

    Peterson B, Strom S 1974 J. Acoust. Soc. Am. 56 771

    [18]
    [19]
    [20]

    Waterman P C 1956 Proc. IEEE 53 805

    [21]

    Waterman P C 1961 J. Math. Phys. 2 700

    [22]
    [23]
    [24]

    Twersky V 1967 J. Math. Phys. 8 589

    [25]
    [26]

    Liang C, Lo Y T 1967 Radio Sci. 2 1481

    [27]
    [28]

    Bruning J H, Lo Y T 1971 IEEE Trans. Antennas Propagat. AP-19 378

    [29]

    Peterson B, Strom S 1973 Phys. Rev. D 8 3667

    [30]
    [31]

    Han G X, Han Y P 2010 Acta Phys. Sin. 59 2434 (in Chinese) [韩国霞, 韩一平 2010 物理学报 59 2434]

    [32]
    [33]

    Cui S, Zhang X J, Fang G Y 2013 Chin. Phys. Lett. 30 034101

    [34]
    [35]

    Cui S, Zhang Y, Zhang P, Zhang X J, Fang G Y 2011 Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International Vancouver, July 24, 2011, p289

    [36]
    [37]
    [38]

    Wang H H, Sun X M 2012 Chin. Phys. B 21 054204

    [39]

    Ulaby T F, Moore K R, Fung K A 1981 Microwave Remote Sensing: Active and Passive (Vol. 3) (Addison: Wesley Publishing Company) p1085

    [40]
    [41]

    Chew W C 1989 Micro Opt. Tech. Lett. 2 380

    [42]
    [43]

    Wang Y M, Chew W C 1990 Micro Opt. Tech. Lett. 3 102

    [44]
    [45]
    [46]

    Chew W C, Wang Y M 1990 Micro Opt. Tech. Lett. 3 164

    [47]

    Chew W C, Gurel L, Wang Y M, Otto G, Wagner R 1992 IEEE Trans Microwave Theory Tech. 40 716

    [48]
    [49]
    [50]

    Chew W C, Friedrich A J, Geiger R 1990 IEEE Trans Geosci Remote 28 207

    [51]
    [52]

    Chew W C, Wang Y M, Gurel L 1992 J. Electromag Waves Appl. 6 1537

    [53]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: A Wiley-Interscience Publication) p57

    [54]
    [55]

    Tsang L, Kong J A, Ding K H 2000 Scattering of Electromagnetic Waves-Theories and Applications (New York: A Wiley-Interscience Publication) p2

    [56]
    [57]

    Stein S 1961 Quarterly Journal Appl. Math. 19 15

    [58]
    [59]

    Cruzan O R 1962 Quarterly Journal Appl. Math. 20 33

    [60]
    [61]

    Wittmann R C 1988 IEEE Trans Antennas Propagat 36 1078

    [62]
    [63]

    Tsang L, Kong J A, Ding K H 2001 Scattering of Electromagnetic Waves-Numerical Simulations (New York: A Wiley-Interscience Publication) p533

    [64]
    [65]

    Chew W C 1995 Waves and Fields in Inhomogeneous Media (New York: IEEE Press) p430

    [66]
    [67]

    Wang Y H, Zhang Y M, Guo L X 2011 Acta Phys. Sin. 60 021102 (in Chinese) [王运华, 张彦敏, 郭立新 2011 物理学报 60 021102]

    [68]
    [69]

    Xu C W, Feng Z, Liu L N, Niu D P 2012 Microwave and Millimeter Wave Circuits and System Technology (MMWCST), 2012 International Workshop on, Chengdu, April 19-20, 2012, p1

    [70]
    [71]
    [72]

    Khajeahsani M S, Mohajeri F, Abiri H 2011 IEEE Trans Antennas Propagat 59 3819

    [73]

    Yan W Z, Du Y, Wu H 2008 PIER 85 39

    [74]
    [75]

    Wang A Q, Guo L X, Chai C 2011 Chin. Phys. B 20 050202

  • [1]

    Duan X Y, Moghaddam M 2011 Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International Vancouver, July 24, 2011, p1227

    [2]
    [3]

    Zhang Y, Zhang X J, Fang G Y 2012 Acta Phys. Sin. 61 184203 (in Chinese) [张宇, 张晓娟, 方广有 2012 物理学报 61 184203]

    [4]
    [5]
    [6]

    Zhang Y, Zhang X J, Fang G Y 2013 Acta Phys. Sin. 62 044204 (in Chinese) [张宇, 张晓娟, 方广有 2013 物理学报 62 044204]

    [7]
    [8]

    Qi Y Z, Huang L, Zhang J G, Fang G Y 2013 Acta Phys. Sin. 62 234201 (in Chinese) [齐有政, 黄玲, 张建国, 方广有 2013 物理学报 62 234201]

    [9]
    [10]

    Lin Z W, Xu X, Zhang X J, Fang G Y 2011 Chin. Phys. Lett. 28 014101

    [11]

    Lin Z W, Xu X, Zhang X J, Fang G Y 2011 Chin. Phys. Lett. 28 014102

    [12]
    [13]
    [14]

    Foldy L L 1945 Phys. Rev. 67 107

    [15]

    Lax M 1952 Phys. Rev. 85 261

    [16]
    [17]

    Peterson B, Strom S 1974 J. Acoust. Soc. Am. 56 771

    [18]
    [19]
    [20]

    Waterman P C 1956 Proc. IEEE 53 805

    [21]

    Waterman P C 1961 J. Math. Phys. 2 700

    [22]
    [23]
    [24]

    Twersky V 1967 J. Math. Phys. 8 589

    [25]
    [26]

    Liang C, Lo Y T 1967 Radio Sci. 2 1481

    [27]
    [28]

    Bruning J H, Lo Y T 1971 IEEE Trans. Antennas Propagat. AP-19 378

    [29]

    Peterson B, Strom S 1973 Phys. Rev. D 8 3667

    [30]
    [31]

    Han G X, Han Y P 2010 Acta Phys. Sin. 59 2434 (in Chinese) [韩国霞, 韩一平 2010 物理学报 59 2434]

    [32]
    [33]

    Cui S, Zhang X J, Fang G Y 2013 Chin. Phys. Lett. 30 034101

    [34]
    [35]

    Cui S, Zhang Y, Zhang P, Zhang X J, Fang G Y 2011 Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International Vancouver, July 24, 2011, p289

    [36]
    [37]
    [38]

    Wang H H, Sun X M 2012 Chin. Phys. B 21 054204

    [39]

    Ulaby T F, Moore K R, Fung K A 1981 Microwave Remote Sensing: Active and Passive (Vol. 3) (Addison: Wesley Publishing Company) p1085

    [40]
    [41]

    Chew W C 1989 Micro Opt. Tech. Lett. 2 380

    [42]
    [43]

    Wang Y M, Chew W C 1990 Micro Opt. Tech. Lett. 3 102

    [44]
    [45]
    [46]

    Chew W C, Wang Y M 1990 Micro Opt. Tech. Lett. 3 164

    [47]

    Chew W C, Gurel L, Wang Y M, Otto G, Wagner R 1992 IEEE Trans Microwave Theory Tech. 40 716

    [48]
    [49]
    [50]

    Chew W C, Friedrich A J, Geiger R 1990 IEEE Trans Geosci Remote 28 207

    [51]
    [52]

    Chew W C, Wang Y M, Gurel L 1992 J. Electromag Waves Appl. 6 1537

    [53]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: A Wiley-Interscience Publication) p57

    [54]
    [55]

    Tsang L, Kong J A, Ding K H 2000 Scattering of Electromagnetic Waves-Theories and Applications (New York: A Wiley-Interscience Publication) p2

    [56]
    [57]

    Stein S 1961 Quarterly Journal Appl. Math. 19 15

    [58]
    [59]

    Cruzan O R 1962 Quarterly Journal Appl. Math. 20 33

    [60]
    [61]

    Wittmann R C 1988 IEEE Trans Antennas Propagat 36 1078

    [62]
    [63]

    Tsang L, Kong J A, Ding K H 2001 Scattering of Electromagnetic Waves-Numerical Simulations (New York: A Wiley-Interscience Publication) p533

    [64]
    [65]

    Chew W C 1995 Waves and Fields in Inhomogeneous Media (New York: IEEE Press) p430

    [66]
    [67]

    Wang Y H, Zhang Y M, Guo L X 2011 Acta Phys. Sin. 60 021102 (in Chinese) [王运华, 张彦敏, 郭立新 2011 物理学报 60 021102]

    [68]
    [69]

    Xu C W, Feng Z, Liu L N, Niu D P 2012 Microwave and Millimeter Wave Circuits and System Technology (MMWCST), 2012 International Workshop on, Chengdu, April 19-20, 2012, p1

    [70]
    [71]
    [72]

    Khajeahsani M S, Mohajeri F, Abiri H 2011 IEEE Trans Antennas Propagat 59 3819

    [73]

    Yan W Z, Du Y, Wu H 2008 PIER 85 39

    [74]
    [75]

    Wang A Q, Guo L X, Chai C 2011 Chin. Phys. B 20 050202

  • [1] 罗朝明, 陈世祯, 凌晓辉, 张进, 罗海陆. 高阶邦加球上柱矢量光束的变换. 物理学报, 2014, 63(15): 154203. doi: 10.7498/aps.63.154203
    [2] 梁子长, 金亚秋. 非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法. 物理学报, 2003, 52(2): 247-255. doi: 10.7498/aps.52.247
    [3] 姚志欣, 潘佰良, 陈 钢, 钟建伟. 光子的态矢量函数. 物理学报, 2006, 55(5): 2158-2164. doi: 10.7498/aps.55.2158
    [4] 基本粒子理论组. 瞬时相互作用近似下介子结构波函数的一些探讨(Ⅱ)——赝标介子和矢量介子的谐振子模型. 物理学报, 1976, 151(5): 415-422. doi: 10.7498/aps.25.415
    [5] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究. 物理学报, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [6] 米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华. 光散射聚集速率测定中T矩阵方法的应用. 物理学报, 2013, 62(13): 134704. doi: 10.7498/aps.62.134704
    [7] 赵宝华, 郑兆勃. 非周期势散射波函数分析方法. 物理学报, 1988, 37(3): 490-496. doi: 10.7498/aps.37.490
    [8] 战元龄, 王立. 多层光学薄膜矢量散射的理论与实验研究. 物理学报, 1990, 39(2): 194-203. doi: 10.7498/aps.39.194
    [9] 任尚元, 茅德强, 李名复. Si中深能级T2对称波函数理论. 物理学报, 1983, 32(10): 1263-1272. doi: 10.7498/aps.32.1263
    [10] 李晓梅, 陈健华. 等价电子耦合波函数的构造和矩阵元计算. 物理学报, 1999, 48(9): 1593-1600. doi: 10.7498/aps.48.1593
    [11] 刘耀阳. 圆锥函数和中值定理在散射问题上的应用. 物理学报, 1965, 116(11): 1889-1896. doi: 10.7498/aps.21.1889
    [12] 范希庆, 张德萱, 申三国. 3c-SiC中深杂质能级的A1,T2对称波函数. 物理学报, 1988, 37(2): 183-188. doi: 10.7498/aps.37.183
    [13] 梁国龙, 陶凯, 王晋晋, 范展. 声矢量阵宽带目标波束域变换广义似然比检测算法. 物理学报, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [14] 姬伟杰, 童创明. 三维目标与粗糙面复合散射的广义稀疏矩阵平面迭代及规范网格算法. 物理学报, 2011, 60(1): 010301. doi: 10.7498/aps.60.010301
    [15] 徐志君, 聂青苗, 李鹏华. 用遗传算法研究一维光晶格中玻色凝聚气体基态波函数. 物理学报, 2009, 58(5): 2878-2883. doi: 10.7498/aps.58.2878
    [16] 李博文, 李冀光, 董晨钟, 袁文渊, 郑曙东. 原子核的有限体积效应对高离化态离子能级和波函数的影响. 物理学报, 2009, 58(3): 1556-1562. doi: 10.7498/aps.58.1556
    [17] 包爱东, 赵峥, 朱建阳. 动态Rindler时空中Dirac旋量粒子的四分量波函数及Hawbing-Unruh热效应. 物理学报, 1993, 42(10): 1550-1555. doi: 10.7498/aps.42.1550
    [18] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析. 物理学报, 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [19] 芶清泉, 黄樹勋. 原子的解析波函数. 物理学报, 1962, 82(2): 63-71. doi: 10.7498/aps.18.63
    [20] 付松年, 董晖, 吴重庆, 刘海涛. 偏振模色散矢量的研究. 物理学报, 2002, 51(11): 2542-2546. doi: 10.7498/aps.51.2542
  • 引用本文:
    Citation:
计量
  • 文章访问数:  645
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-27
  • 修回日期:  2014-03-25
  • 刊出日期:  2014-08-05

基于递归T矩阵的离散随机散射体散射特性研究

  • 1. 中国科学院电磁辐射与探测技术重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100190
    基金项目: 

    国家自然科学基金(批准号:61172017)资助的课题.

摘要: 本文根据电磁场矢量球波函数多极点展开原理及矢量叠加定理提出了递归T矩阵算法的矢量形式,并且基于矢量递归T矩阵算法建立了多散射球模拟离散随机散射体散射的三维电磁散射模型. 通过计算不同尺寸、随机分布散射球的散射以及分析散射球间的高阶散射效应,结果表明:矢量递归T矩阵算法具有很高的计算精度,算法中包含多散射体间的高阶散射效应,因此能够精确计算多散射体总的散射效应. 本文所建模型可应用于土壤湿度探测工程中评估地表下掩埋离散随机散射体散射对雷达回波信号产生的影响.

English Abstract

参考文献 (75)

目录

    /

    返回文章
    返回