搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲氧化锌微米线微腔中的回音壁模

邱康生 赵彦辉 刘相波 冯宝华 许秀来

引用本文:
Citation:

弯曲氧化锌微米线微腔中的回音壁模

邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来

Whispering gallery modes in a bent ZnO microwire

Qiu Kang-Sheng, Zhao Yan-Hui, Liu Xiang-Bo, Feng Bao-Hua, Xu Xiu-Lai
PDF
导出引用
  • 本文用微区共聚焦荧光光学显微镜在垂直于氧化锌微米线c轴的方向测量微米线上不同位置的光谱,通过对比直的和弯曲的微米线上TE和TM偏振的光谱,观察到了弯曲氧化锌微米线中不同位置的回音壁模式的移动,其机理是在弯曲应力作用下激子能级发生了移动,带边附近的介电常数也随之变化,导致微腔中的回音壁模式发生移动.
    Micro-cavities play an important role in the light-matter interaction. The cross section of wurtzite-structured ZnO microwire is a hexagon, which gives a high quality factor. Exciton-polariton, micro-and nanowire lasers and polariton condensation have been investigated using the micro-cavities of ZnO microwires at room temperature. Strain, which changes the dielectric index of a material, is one of the methods to tune the interaction between the light and the matter. In this work, the photoluminescence spectra of strain free and bent ZnO microwires are measured across the wires, and the modes shifts are observed only in the bent one near the band edge. Shifting of the cavity modes across the wire can be observed in both TE and TM polarized spectra. For a bent ZnO microwire, the microcavity can be modified by the strain from bending, and the exciton energies may shift due to the strain. The shifted exciton energy induces a change of dielectric constant, resulting in the shifting of the cavity modes across the microwire.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB328706,2014CB921003)、国家自然科学基金(批准号:11174356,61275060)和中国科学院百人计划项目资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB328706, 2014CB921003), the National Natural Science Foundation of China (Grant Nos. 11174356, 61275060), and the Hundred Talents Program of the Chinese Academy of Sciences.
    [1]

    Dai J, Xu C X, Ding R, Zheng K, Shi Z L, Lv C G, Cui Y P 2009 Appl. Phys. Lett. 95 191117

    [2]
    [3]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104 

    [4]
    [5]

    Si X, Su X R Li C, Han Y B, Fang G J Wang Q Q 2008 Chin. Phys. B 17 1291

    [6]
    [7]

    Dai J, Xu C X, Sun X W 2011 Opt. Commun. 284 4018

    [8]

    Gao Y, Wang Z L 2007 Nano Lett. 7 2499

    [9]
    [10]
    [11]

    Kon S, Horowitz R 2008 IEEE Sens. J 8 2027

    [12]
    [13]

    Wiersig J 2003 Phys. Rev. A 67 023807

    [14]
    [15]

    van Vugt L K, Rhle S, Ravindran P, Gerritsen H C, Kuipers L, Vanmaekelbergh D 2006 Phys. Rev. Lett 97 147401

    [16]

    Sun L, Chen Z, Ren Q, Yu K, Bai L, Zhou W, Xiong H, Zhu Z, Shen X 2008 Phys. Rev. Lett 100 156403

    [17]
    [18]

    Xue H, Pan N, Li M, Wu Y, Wang X, Hou J 2010 Nanotechnology 21 215701

    [19]
    [20]

    Wagner M R, Callsen G, Reparaz J S, Kirste R, Hoffmann A, Rodina A V, Schleife A, Bechstedt F, Phillips M R 2013 Phys. Rev. B 88 235210

    [21]
    [22]
    [23]

    Han X, Kou L, Zhang Z, Zhang Z, Zhu X, Xu J, Liao Z, Guo W, Yu D 2012 Adv. Mater 24 4707

    [24]

    Grundmann M, Dietrich C P 2012 Phys. Status. Solidi. B 249 871

    [25]
    [26]

    Dietrich C, Lange M, Klupfel F, Von Wenckstern H, Schmidt-Grund R, Grundmann M 2011 Appl. Phys. Lett. 98 031105

    [27]
    [28]

    Xu C, Sun X W, Dong Z L, Yu M 2004 Appl. Phys. Lett. 85 3878

    [29]
    [30]
    [31]

    Xu X, Lau S, Chen J, Chen G, Tay B 2001 J. Cryst. Growth 223 201

    [32]
    [33]

    Korsunska N, Borkovska L, Bulakh B, Khomenkova L Y, Kushnirenko V, Markevich I 2003 J. Lumin. 102 733

    [34]
    [35]

    Mang A, Reimann K, Rbenacke S 1995 Solid State Commun 94 251

    [36]
    [37]

    Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S-J, Morkoc H 2005 J. Appl. Phys 98 041301

    [38]

    Xu X, Brossard F S F, Williams D A, Collins D P, Holmes M J, Taylor R A, Zhang X 2009 Appl. Phys. Lett. 94

    [39]
    [40]

    Xu X, Brossard F S F, Williams D A, Collins D P, Holmes M J, Taylor R A, Zhang X 2010 New J. Phys 12 083052

    [41]
    [42]

    Nobis T, Kaidashev E M, Rahm A, Lorenz M, Grundmann M 2004 Phys. Rev. Lett. 93 103903

    [43]
    [44]

    Liao Z M, Wu H C, Fu Q, Fu X W, Zhu X L, Xu J, Shvets I V, Zhang Z H, Guo W L, Leprince Wang Y, Wu X S, Yu D P 2012 Sci. Rep. 2 452

    [45]
    [46]
    [47]

    Vedam K, Davis T 1969 Phys. Rev. 181 1196

    [48]
    [49]

    Lagois J 1981 Phys. Rev. B 23 5511

  • [1]

    Dai J, Xu C X, Ding R, Zheng K, Shi Z L, Lv C G, Cui Y P 2009 Appl. Phys. Lett. 95 191117

    [2]
    [3]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104 

    [4]
    [5]

    Si X, Su X R Li C, Han Y B, Fang G J Wang Q Q 2008 Chin. Phys. B 17 1291

    [6]
    [7]

    Dai J, Xu C X, Sun X W 2011 Opt. Commun. 284 4018

    [8]

    Gao Y, Wang Z L 2007 Nano Lett. 7 2499

    [9]
    [10]
    [11]

    Kon S, Horowitz R 2008 IEEE Sens. J 8 2027

    [12]
    [13]

    Wiersig J 2003 Phys. Rev. A 67 023807

    [14]
    [15]

    van Vugt L K, Rhle S, Ravindran P, Gerritsen H C, Kuipers L, Vanmaekelbergh D 2006 Phys. Rev. Lett 97 147401

    [16]

    Sun L, Chen Z, Ren Q, Yu K, Bai L, Zhou W, Xiong H, Zhu Z, Shen X 2008 Phys. Rev. Lett 100 156403

    [17]
    [18]

    Xue H, Pan N, Li M, Wu Y, Wang X, Hou J 2010 Nanotechnology 21 215701

    [19]
    [20]

    Wagner M R, Callsen G, Reparaz J S, Kirste R, Hoffmann A, Rodina A V, Schleife A, Bechstedt F, Phillips M R 2013 Phys. Rev. B 88 235210

    [21]
    [22]
    [23]

    Han X, Kou L, Zhang Z, Zhang Z, Zhu X, Xu J, Liao Z, Guo W, Yu D 2012 Adv. Mater 24 4707

    [24]

    Grundmann M, Dietrich C P 2012 Phys. Status. Solidi. B 249 871

    [25]
    [26]

    Dietrich C, Lange M, Klupfel F, Von Wenckstern H, Schmidt-Grund R, Grundmann M 2011 Appl. Phys. Lett. 98 031105

    [27]
    [28]

    Xu C, Sun X W, Dong Z L, Yu M 2004 Appl. Phys. Lett. 85 3878

    [29]
    [30]
    [31]

    Xu X, Lau S, Chen J, Chen G, Tay B 2001 J. Cryst. Growth 223 201

    [32]
    [33]

    Korsunska N, Borkovska L, Bulakh B, Khomenkova L Y, Kushnirenko V, Markevich I 2003 J. Lumin. 102 733

    [34]
    [35]

    Mang A, Reimann K, Rbenacke S 1995 Solid State Commun 94 251

    [36]
    [37]

    Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S-J, Morkoc H 2005 J. Appl. Phys 98 041301

    [38]

    Xu X, Brossard F S F, Williams D A, Collins D P, Holmes M J, Taylor R A, Zhang X 2009 Appl. Phys. Lett. 94

    [39]
    [40]

    Xu X, Brossard F S F, Williams D A, Collins D P, Holmes M J, Taylor R A, Zhang X 2010 New J. Phys 12 083052

    [41]
    [42]

    Nobis T, Kaidashev E M, Rahm A, Lorenz M, Grundmann M 2004 Phys. Rev. Lett. 93 103903

    [43]
    [44]

    Liao Z M, Wu H C, Fu Q, Fu X W, Zhu X L, Xu J, Shvets I V, Zhang Z H, Guo W L, Leprince Wang Y, Wu X S, Yu D P 2012 Sci. Rep. 2 452

    [45]
    [46]
    [47]

    Vedam K, Davis T 1969 Phys. Rev. 181 1196

    [48]
    [49]

    Lagois J 1981 Phys. Rev. B 23 5511

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用. 物理学报, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [3] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究. 物理学报, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [4] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [5] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [6] 徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋. 耦合光学微腔的频率调谐过程分析. 物理学报, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [7] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [8] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [9] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射. 物理学报, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [10] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响. 物理学报, 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [11] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [12] 郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东. 应力调制的自旋转矩临界电流. 物理学报, 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [13] 袁文佳, 章岳光, 沈伟东, 马群, 刘旭. 离子束溅射制备Nb2O5光学薄膜的特性研究. 物理学报, 2011, 60(4): 047803. doi: 10.7498/aps.60.047803
    [14] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [15] 谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究. 物理学报, 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [16] 仇善良, 李永平. 圆腔回音壁模的自洽场描述. 物理学报, 2009, 58(12): 8309-8315. doi: 10.7498/aps.58.8309
    [17] 靳惠明, Felix Adriana, Aroyave Majorri. 离子注钇对镍900℃高温氧化行为及氧化膜性能的影响研究. 物理学报, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [18] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [20] 茶丽梅, 张鹏翔, H.U.Habermeier. 双层锰氧化物薄膜的制备及其物理性质. 物理学报, 2003, 52(2): 498-502. doi: 10.7498/aps.52.498
计量
  • 文章访问数:  5683
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-01
  • 修回日期:  2014-05-16
  • 刊出日期:  2014-09-05

/

返回文章
返回