搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含螺旋单元频率选择表面的宽频带强吸收复合吸波体

徐永顺 别少伟 江建军 徐海兵 万东 周杰

含螺旋单元频率选择表面的宽频带强吸收复合吸波体

徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰
PDF
导出引用
  • 设计和制备了含螺旋单元频率选择表面吸波片的三层复合吸波体,上层和下层均为磁性吸波片,中间层为带缺口的螺旋单元频率选择表面. 复合吸波体在总厚度分别为1.4,1.7和2.0 mm时,其反射率在-10 dB以下的频带宽度分别达到了9.29,6.69和7.11 GHz,与不含有频率选择表面的吸波体相比较(其他参数相同),-10 dB以下反射率带宽分别提高了159.5%,69.3%和129.4%,复合吸波体在总厚度低于吸波体时,也取得了更好的反射效果. 带缺口圆螺旋单元的频率选择表面嵌入吸波体中,引入了额外的吸收频带,拓宽了吸波体的反射率频带宽度. 仿真分析表明嵌入频率选择表面能够改善吸波体的阻抗匹配性,进而影响其反射率.
    • 基金项目: 国家自然科学基金(批准号:61172003)和湖北省自然科学基金(批准号:ZRY0124)资助的课题.
    [1]

    Xu Q Y, Zhang H B, Zhou P H, Lu H P, Liang D F, Xie J L 2013 Acta Phys. Sin. 62 058103 (in Chinese) [徐秋阳, 张辉彬, 周佩珩, 陆海鹏, 梁迪飞, 谢建良 2013 物理学报 62 058103]

    [2]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang Q, Zhang Z, Zhang H M 2013 Acta Phys. Sin. 62 244101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅 2013 物理学报 62 244101]

    [3]

    Zhou Y J, Pang Y Q, Cheng H F 2013 Chin. Phys. B 22 015201

    [4]

    Chen Q, Jiang J J, Bie S W, Wang P, Liu P, Xu X X 2011 Acta Phys. Sin. 60 074202 (in Chinese) [陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣 2011 物理学报 60 074202]

    [5]

    Wang M L, Zhang S J, Liu J Q, Liang W, Liu X M, Liang X W 2012 International Workshop on Metamaterials (Meta) Nanjing, China October 8-10, 2012 p1

    [6]

    Chen L Y, Duan Y P, Liu L D, Guo J B, Lin S H 2011 Mater. Des. 32 570

    [7]

    Chiu S C, Yu H C, Li Y Y 2010 J. Phys. Chem. C 114 1947

    [8]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [9]

    Munk B A 2000 Frequency Selective Surfaces: Theory and Design (New York: Wiley) pp3-12

    [10]

    Zhou H, Qu S B, Peng W D, Lin B Q, Wang J F, Ma H, Zhang J Q, Bai P, Wang X H, Xu Z 2012 Chin. Phys. B 21 054101

    [11]

    Zhang L, Yang G H, Wu Q, Hua J 2012 IEEE Trans. Magn. 48 4534

    [12]

    Li L, Werner D H, Bossard J A, Mayer T S 2006 IEEE Trans. Antennas Propag. 54 908

    [13]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2012 IEEE Antennas Wireless Propag. Lett. 11 675

    [14]

    Chen H Y, Zhang H B, Deng L J 2010 IEEE Antennas Wireless Propag. Lett. 9 899

    [15]

    Delihacioglu K, Uckun S, Ege T 2008 Prog. Electromagnet. Res. B 6 81

    [16]

    Seman F C, Cahill R 2011 Microw. Opt. Technol. Lett. 53 1538

    [17]

    Li D, Xie Y J, Wang P, Yang R 2007 J. Electromagnet. Wave. Appl. 21 1551

  • [1]

    Xu Q Y, Zhang H B, Zhou P H, Lu H P, Liang D F, Xie J L 2013 Acta Phys. Sin. 62 058103 (in Chinese) [徐秋阳, 张辉彬, 周佩珩, 陆海鹏, 梁迪飞, 谢建良 2013 物理学报 62 058103]

    [2]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang Q, Zhang Z, Zhang H M 2013 Acta Phys. Sin. 62 244101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅 2013 物理学报 62 244101]

    [3]

    Zhou Y J, Pang Y Q, Cheng H F 2013 Chin. Phys. B 22 015201

    [4]

    Chen Q, Jiang J J, Bie S W, Wang P, Liu P, Xu X X 2011 Acta Phys. Sin. 60 074202 (in Chinese) [陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣 2011 物理学报 60 074202]

    [5]

    Wang M L, Zhang S J, Liu J Q, Liang W, Liu X M, Liang X W 2012 International Workshop on Metamaterials (Meta) Nanjing, China October 8-10, 2012 p1

    [6]

    Chen L Y, Duan Y P, Liu L D, Guo J B, Lin S H 2011 Mater. Des. 32 570

    [7]

    Chiu S C, Yu H C, Li Y Y 2010 J. Phys. Chem. C 114 1947

    [8]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [9]

    Munk B A 2000 Frequency Selective Surfaces: Theory and Design (New York: Wiley) pp3-12

    [10]

    Zhou H, Qu S B, Peng W D, Lin B Q, Wang J F, Ma H, Zhang J Q, Bai P, Wang X H, Xu Z 2012 Chin. Phys. B 21 054101

    [11]

    Zhang L, Yang G H, Wu Q, Hua J 2012 IEEE Trans. Magn. 48 4534

    [12]

    Li L, Werner D H, Bossard J A, Mayer T S 2006 IEEE Trans. Antennas Propag. 54 908

    [13]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2012 IEEE Antennas Wireless Propag. Lett. 11 675

    [14]

    Chen H Y, Zhang H B, Deng L J 2010 IEEE Antennas Wireless Propag. Lett. 9 899

    [15]

    Delihacioglu K, Uckun S, Ege T 2008 Prog. Electromagnet. Res. B 6 81

    [16]

    Seman F C, Cahill R 2011 Microw. Opt. Technol. Lett. 53 1538

    [17]

    Li D, Xie Y J, Wang P, Yang R 2007 J. Electromagnet. Wave. Appl. 21 1551

  • [1] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [2] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [3] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计. 物理学报, 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [4] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [5] 周航, 屈绍波, 彭卫东, 王甲富, 马华, 张东伟, 张介秋, 柏鹏, 徐卓. 一种加载电阻膜吸波材料的新型频率选择表面. 物理学报, 2012, 61(10): 104201. doi: 10.7498/aps.61.104201
    [6] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [7] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [8] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体 . 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [9] 郭畅, 张岩. 利用波矢滤波超表面实现超衍射成像. 物理学报, 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [10] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. S/X双频带吸波实时可调的吸波器. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [11] 卢 俊, 陈新邑, 汪剑波. 圆环单元FSS对吸波材料特性的影响研究. 物理学报, 2008, 57(11): 7200-7203. doi: 10.7498/aps.57.7200
    [12] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [13] 党可征, 时家明, 李志刚, 孟祥豪, 王启超. 基于高阻抗表面的多频带Salisbury屏设计. 物理学报, 2015, 64(11): 114101. doi: 10.7498/aps.64.114101
    [14] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究 . 物理学报, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [15] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究. 物理学报, 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [16] 焦健, 徐念喜, 冯晓国, 梁凤超, 赵晶丽, 高劲松. 基于互补屏的主动频率选择表面设计研究. 物理学报, 2013, 62(16): 167306. doi: 10.7498/aps.62.167306
    [17] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
    [18] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红. 二阶Y环频率选择表面的设计研究. 物理学报, 2010, 59(10): 7338-7343. doi: 10.7498/aps.59.7338
    [19] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性 . 物理学报, 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [20] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1024
  • PDF下载量:  458
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-30
  • 修回日期:  2014-06-06
  • 刊出日期:  2014-10-05

含螺旋单元频率选择表面的宽频带强吸收复合吸波体

  • 1. 华中科技大学光学与电子信息学院, 武汉 430074
    基金项目: 

    国家自然科学基金(批准号:61172003)和湖北省自然科学基金(批准号:ZRY0124)资助的课题.

摘要: 设计和制备了含螺旋单元频率选择表面吸波片的三层复合吸波体,上层和下层均为磁性吸波片,中间层为带缺口的螺旋单元频率选择表面. 复合吸波体在总厚度分别为1.4,1.7和2.0 mm时,其反射率在-10 dB以下的频带宽度分别达到了9.29,6.69和7.11 GHz,与不含有频率选择表面的吸波体相比较(其他参数相同),-10 dB以下反射率带宽分别提高了159.5%,69.3%和129.4%,复合吸波体在总厚度低于吸波体时,也取得了更好的反射效果. 带缺口圆螺旋单元的频率选择表面嵌入吸波体中,引入了额外的吸收频带,拓宽了吸波体的反射率频带宽度. 仿真分析表明嵌入频率选择表面能够改善吸波体的阻抗匹配性,进而影响其反射率.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回