搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀弱直流偏置磁场中CoFe-基非晶态合金丝的静磁化分布和退磁场分布

赵胤 许洪光 张钦宇

非均匀弱直流偏置磁场中CoFe-基非晶态合金丝的静磁化分布和退磁场分布

赵胤, 许洪光, 张钦宇
PDF
导出引用
导出核心图
  • 当前从事非晶态合金丝巨磁阻抗效应的理论研究均以忽略其内部退磁场为前提, 该前提对于小尺寸非晶态合金丝不适用. 本文提出一种用于计算CoFe-基非晶态合金丝内部静磁化强度、退磁场分布的模型. 该模型将非晶态合金丝内部划分成同轴、等宽、等厚、半径不同的相邻无交圆环, 计算各圆环内磁化强度对场点r处退磁场冲激响应, 得到冲激响应矩阵. 利用该矩阵求解均匀/非均匀直流偏置磁场中非晶态合金丝内静磁化强度、退磁场分布.
    • 基金项目: 国家自然科学基金(批准号: 61271247)资助的课题.
    [1]

    Lu Z C, Li D R, Zhou S X 2004 Adv. Mater. Ind. 11 46 (in Chinese) [卢志超, 李德仁, 周少雄 2004 新材料产业 11 46]

    [2]

    Mohri K, Kohsawa T, Kawashima K, Yoshida H, Panina L 1992 IEEE Trans. Magn. 28 3150

    [3]

    Phan M, Peng H 2008 Prog. Mater. Sci. 53 323

    [4]

    Kraus L 1999 J. Magn. Magn. Mater. 195 764

    [5]

    Usov N, Antonov A, Lagar'kov A 1998 J. Magn. Magn. Mater. 185 159

    [6]

    Makhnovskiy D, Panina L, Mapps D 2001 Phys. Rev. B 63 144424

    [7]

    Bao B H, Song X F, Ren N F, Li C S 2006 Acta Phys. Sin. 55 3698 (in Chinese) [鲍丙豪, 宋雪丰, 任乃飞, 李长生 2006 物理学报 55 3698]

    [8]

    Aharoni A 2000 Introduction to the Theory of Ferromagnetism (Oxford: Oxford University Press) pp122-131, 173-179, 181

    [9]

    Menard D, Britel M, Ciureanu P, Yelon A 1998 J. Appl. Phys. 84 2805

    [10]

    Usov N, Gudoshnikov S 2013 J. Appl. Phys. 113 243902

    [11]

    Panina L, Mohri K, Uchiyama T 1997 Physica A 241 429

    [12]

    Joseph R, Schlömann E 1965 J. Appl. Phys. 36 1579

    [13]

    Templeton T L, Arrott A, Aharoni A 1984 J. Appl. Phys. 55 2189

    [14]

    Arrott A S, Heinrich B, Aharoni A 1979 IEEE Trans. Magn. 15 1228

    [15]

    Heinrich B, Arrott A 1975 Magnetism and Magnetic Materials-1974: 20th Annual Conference San Francisco, USA, January 1, 1975, 702

    [16]

    Arrott A, Heinrich B, Bloomberg D 1974 IEEE Trans. Magn. 10 950

    [17]

    Bloomberg D, Arrott A 1975 Can. J. Phys. 53 1454

    [18]

    Arrott A, Heinrich B, Templeton T, Aharoni A 1979 J. Appl. Phys. 50 2387

    [19]

    Aharoni A 1998 J. Appl. Phys. 83 3432

    [20]

    Chen D, Pardo E, Sanchez A 2005 IEEE Trans. Magn. 41 2077

    [21]

    Pardo E, Chen D, Sanchez A 2004 IEEE Trans. Magn. 40 1491

    [22]

    Chen D 2001 J. Appl. Phys. 89 3413

    [23]

    Chen D, Pardo E, Sanchez A 2002 IEEE Trans. Magn. 38 1742

    [24]

    Chen D, Brug J A, Goldfarb R B 1991 IEEE Trans. Magn. 27 3601

    [25]

    Chen D, Pardo E, Sanchez A 2006 J. Magn. Magn. Mater. 306 135

    [26]

    Beleggia M, Vokoun D, De Graef M 2009 J. Magn. Magn. Mater. 321 1306

    [27]

    Smith A, Nielsen K K, Christensen D V, Bahl C R H, Bjork R, Hattel J 2010 J. Appl. Phys. 107 103910

    [28]

    Aharoni A 1983 J. Appl. Phys. 54 488

    [29]

    Aharoni A 1981 J. Appl. Phys. 52 6840

    [30]

    Farahani A, Konrad A 2008 IEEE Trans. Magn. 44 3225

    [31]

    Pugh B, Kramer D, Chen C 2011 IEEE Trans. Magn. 47 4100

    [32]

    He Y Z 2013 Acta Phys. Sin. 62 084105 (in Chinese) [何永周 2013 物理学报 62 084105]

    [33]

    He S T, Chang S Q, Shi H G 2011 Chin. Phys. B 20 127503

    [34]

    Pardavi-horvath M, Yan J, Peverley J 2001 IEEE Trans. Magn. 37 3881

    [35]

    Takajo M, Yamasaki J, Humphrey F 1993 IEEE Trans. Magn. 29 3484

    [36]

    Kabanov Y, Zhukov A, Zhukova V, Gonzalez J 2005 Appl. Phys. Lett. 87 142507

    [37]

    O'handley R 2000 Modern Magnetic Materials: Principles and Applications (New York: Wiley) pp276-280

  • [1]

    Lu Z C, Li D R, Zhou S X 2004 Adv. Mater. Ind. 11 46 (in Chinese) [卢志超, 李德仁, 周少雄 2004 新材料产业 11 46]

    [2]

    Mohri K, Kohsawa T, Kawashima K, Yoshida H, Panina L 1992 IEEE Trans. Magn. 28 3150

    [3]

    Phan M, Peng H 2008 Prog. Mater. Sci. 53 323

    [4]

    Kraus L 1999 J. Magn. Magn. Mater. 195 764

    [5]

    Usov N, Antonov A, Lagar'kov A 1998 J. Magn. Magn. Mater. 185 159

    [6]

    Makhnovskiy D, Panina L, Mapps D 2001 Phys. Rev. B 63 144424

    [7]

    Bao B H, Song X F, Ren N F, Li C S 2006 Acta Phys. Sin. 55 3698 (in Chinese) [鲍丙豪, 宋雪丰, 任乃飞, 李长生 2006 物理学报 55 3698]

    [8]

    Aharoni A 2000 Introduction to the Theory of Ferromagnetism (Oxford: Oxford University Press) pp122-131, 173-179, 181

    [9]

    Menard D, Britel M, Ciureanu P, Yelon A 1998 J. Appl. Phys. 84 2805

    [10]

    Usov N, Gudoshnikov S 2013 J. Appl. Phys. 113 243902

    [11]

    Panina L, Mohri K, Uchiyama T 1997 Physica A 241 429

    [12]

    Joseph R, Schlömann E 1965 J. Appl. Phys. 36 1579

    [13]

    Templeton T L, Arrott A, Aharoni A 1984 J. Appl. Phys. 55 2189

    [14]

    Arrott A S, Heinrich B, Aharoni A 1979 IEEE Trans. Magn. 15 1228

    [15]

    Heinrich B, Arrott A 1975 Magnetism and Magnetic Materials-1974: 20th Annual Conference San Francisco, USA, January 1, 1975, 702

    [16]

    Arrott A, Heinrich B, Bloomberg D 1974 IEEE Trans. Magn. 10 950

    [17]

    Bloomberg D, Arrott A 1975 Can. J. Phys. 53 1454

    [18]

    Arrott A, Heinrich B, Templeton T, Aharoni A 1979 J. Appl. Phys. 50 2387

    [19]

    Aharoni A 1998 J. Appl. Phys. 83 3432

    [20]

    Chen D, Pardo E, Sanchez A 2005 IEEE Trans. Magn. 41 2077

    [21]

    Pardo E, Chen D, Sanchez A 2004 IEEE Trans. Magn. 40 1491

    [22]

    Chen D 2001 J. Appl. Phys. 89 3413

    [23]

    Chen D, Pardo E, Sanchez A 2002 IEEE Trans. Magn. 38 1742

    [24]

    Chen D, Brug J A, Goldfarb R B 1991 IEEE Trans. Magn. 27 3601

    [25]

    Chen D, Pardo E, Sanchez A 2006 J. Magn. Magn. Mater. 306 135

    [26]

    Beleggia M, Vokoun D, De Graef M 2009 J. Magn. Magn. Mater. 321 1306

    [27]

    Smith A, Nielsen K K, Christensen D V, Bahl C R H, Bjork R, Hattel J 2010 J. Appl. Phys. 107 103910

    [28]

    Aharoni A 1983 J. Appl. Phys. 54 488

    [29]

    Aharoni A 1981 J. Appl. Phys. 52 6840

    [30]

    Farahani A, Konrad A 2008 IEEE Trans. Magn. 44 3225

    [31]

    Pugh B, Kramer D, Chen C 2011 IEEE Trans. Magn. 47 4100

    [32]

    He Y Z 2013 Acta Phys. Sin. 62 084105 (in Chinese) [何永周 2013 物理学报 62 084105]

    [33]

    He S T, Chang S Q, Shi H G 2011 Chin. Phys. B 20 127503

    [34]

    Pardavi-horvath M, Yan J, Peverley J 2001 IEEE Trans. Magn. 37 3881

    [35]

    Takajo M, Yamasaki J, Humphrey F 1993 IEEE Trans. Magn. 29 3484

    [36]

    Kabanov Y, Zhukov A, Zhukova V, Gonzalez J 2005 Appl. Phys. Lett. 87 142507

    [37]

    O'handley R 2000 Modern Magnetic Materials: Principles and Applications (New York: Wiley) pp276-280

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1202
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-11
  • 修回日期:  2014-08-13
  • 刊出日期:  2014-12-05

非均匀弱直流偏置磁场中CoFe-基非晶态合金丝的静磁化分布和退磁场分布

  • 1. 哈尔滨工业大学深圳研究生院, 通信工程研究中心, 深圳 518055
    基金项目: 

    国家自然科学基金(批准号: 61271247)资助的课题.

摘要: 当前从事非晶态合金丝巨磁阻抗效应的理论研究均以忽略其内部退磁场为前提, 该前提对于小尺寸非晶态合金丝不适用. 本文提出一种用于计算CoFe-基非晶态合金丝内部静磁化强度、退磁场分布的模型. 该模型将非晶态合金丝内部划分成同轴、等宽、等厚、半径不同的相邻无交圆环, 计算各圆环内磁化强度对场点r处退磁场冲激响应, 得到冲激响应矩阵. 利用该矩阵求解均匀/非均匀直流偏置磁场中非晶态合金丝内静磁化强度、退磁场分布.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回