搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三端口网络模型的折叠波导行波管注波互作用理论研究

颜卫忠 胡玉禄 李建清 杨中海 田云先 李斌

基于三端口网络模型的折叠波导行波管注波互作用理论研究

颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌
PDF
导出引用
导出核心图
  • 将周期性慢波结构中的单元结构等效为一个三端口网络, 利用高频结构模拟软件确定等效模型的参数, 由此建立了一种通用的慢波结构等效模型. 该方法不需要进行复杂的电路等效, 直接由高频软件得到通道内场分布, 因此较解析方法简单, 又不像等效线路模型那么烦琐. 基于该三端口网络模型, 建立了适用于折叠波导行波管的一维注波互作用非线性理论模型, 编写了数值计算程序, 对一支折叠波导行波管进行了模拟. 该理论模型模拟的结果与实验结果误差小于10%. 该理论模型可以用于指导新型折叠波导行波管的设计及非线性模拟研究.
    • 基金项目: 国家自然科学基金(批准号:60931001,61201003,61071030,61301054)资助的课题.
    [1]

    Antonsen T M, Vlasov A N, Chernin D P, Chernyavskiy I A, Levush B 2013 IEEE Trans. Electron Dev. 60 2906

    [2]

    Liu S K 1995 Int. J. Infrared Milli. Waves 16 809

    [3]

    Liu S K 2000 Int. J. Infrared Milli. Waves 21 655

    [4]

    Na Y H, Chung S W, Choi J J 2002 IEEE Trans. Plasma Sci. 30 1017

    [5]

    Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685

    [6]

    Cooke S J, Mondelli A A, Levush B, Antonsen T M, Chernin D P, McClure T H, Whaley D R, Basten M 2000 IEEE Trans. Plasma Sci. 28 841

    [7]

    Yin H R, Xu J, Yue L N, Gong Y B, Wei Y Y 2012 Acta Phys. Sin. 61 244106 (in Chinese) [殷海荣, 徐进, 岳玲娜, 宫玉彬, 魏彦玉 2012 物理学报 61 244106]

    [8]

    Peng W F, Hu Y L, Cao Z, Yang Z H 2013 Prog. Electromagn. Res. M 28 73

    [9]

    Chernin D, Antonsen T M, Vlasov A N, Chernyavskiy I A, Nguyen K T, Levush B 2014 IEEE Trans. Electron Dev. 61 1699

    [10]

    Kosmahl H G, Branch G M 1973 IEEE Trans. Electron Dev. 20 621

    [11]

    Hu Y L, Yang Z H, Li J Q, Li B, Gao P, Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese) [胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林 2009 物理学报 58 6665]

    [12]

    Peng W F, Hu Y L, Yang Z H, Li J Q, Lu Q R, Li B 2011 Chin. Phys. B 20 078401

    [13]

    Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403

    [14]

    Curnow H J 1965 IEEE Trans. Microw. Theory Tech. 13 671

    [15]

    Kino G S, Hiramatsu Y, Harman W A, Ruetz J A 1967 Microwave and Optical Generation and Amplification (London: Institution of Electrical Engineers) p49

    [16]

    Bai C J, Li J Q, Hu Y L, Yang Z H, Li B 2012 Acta Phys. Sin. 61 178401 (in Chinese) [白春江, 李建清, 胡玉禄, 杨中海, 李斌 2012 物理学报 61 178401]

    [17]

    Hu Y F, Feng J J, Cai J, Du Y H, Tang Y, Wu X P 2011 IEEE International Vacuum Electronics Conference Bangalore, India, February 21-24, 2011 p21

  • [1]

    Antonsen T M, Vlasov A N, Chernin D P, Chernyavskiy I A, Levush B 2013 IEEE Trans. Electron Dev. 60 2906

    [2]

    Liu S K 1995 Int. J. Infrared Milli. Waves 16 809

    [3]

    Liu S K 2000 Int. J. Infrared Milli. Waves 21 655

    [4]

    Na Y H, Chung S W, Choi J J 2002 IEEE Trans. Plasma Sci. 30 1017

    [5]

    Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685

    [6]

    Cooke S J, Mondelli A A, Levush B, Antonsen T M, Chernin D P, McClure T H, Whaley D R, Basten M 2000 IEEE Trans. Plasma Sci. 28 841

    [7]

    Yin H R, Xu J, Yue L N, Gong Y B, Wei Y Y 2012 Acta Phys. Sin. 61 244106 (in Chinese) [殷海荣, 徐进, 岳玲娜, 宫玉彬, 魏彦玉 2012 物理学报 61 244106]

    [8]

    Peng W F, Hu Y L, Cao Z, Yang Z H 2013 Prog. Electromagn. Res. M 28 73

    [9]

    Chernin D, Antonsen T M, Vlasov A N, Chernyavskiy I A, Nguyen K T, Levush B 2014 IEEE Trans. Electron Dev. 61 1699

    [10]

    Kosmahl H G, Branch G M 1973 IEEE Trans. Electron Dev. 20 621

    [11]

    Hu Y L, Yang Z H, Li J Q, Li B, Gao P, Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese) [胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林 2009 物理学报 58 6665]

    [12]

    Peng W F, Hu Y L, Yang Z H, Li J Q, Lu Q R, Li B 2011 Chin. Phys. B 20 078401

    [13]

    Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403

    [14]

    Curnow H J 1965 IEEE Trans. Microw. Theory Tech. 13 671

    [15]

    Kino G S, Hiramatsu Y, Harman W A, Ruetz J A 1967 Microwave and Optical Generation and Amplification (London: Institution of Electrical Engineers) p49

    [16]

    Bai C J, Li J Q, Hu Y L, Yang Z H, Li B 2012 Acta Phys. Sin. 61 178401 (in Chinese) [白春江, 李建清, 胡玉禄, 杨中海, 李斌 2012 物理学报 61 178401]

    [17]

    Hu Y F, Feng J J, Cai J, Du Y H, Tang Y, Wu X P 2011 IEEE International Vacuum Electronics Conference Bangalore, India, February 21-24, 2011 p21

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1150
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-26
  • 修回日期:  2014-07-22
  • 刊出日期:  2014-12-05

基于三端口网络模型的折叠波导行波管注波互作用理论研究

  • 1. 电子科技大学物理电子学院, 微波电真空器件国家级重点实验室, 成都 610054
    基金项目: 

    国家自然科学基金(批准号:60931001,61201003,61071030,61301054)资助的课题.

摘要: 将周期性慢波结构中的单元结构等效为一个三端口网络, 利用高频结构模拟软件确定等效模型的参数, 由此建立了一种通用的慢波结构等效模型. 该方法不需要进行复杂的电路等效, 直接由高频软件得到通道内场分布, 因此较解析方法简单, 又不像等效线路模型那么烦琐. 基于该三端口网络模型, 建立了适用于折叠波导行波管的一维注波互作用非线性理论模型, 编写了数值计算程序, 对一支折叠波导行波管进行了模拟. 该理论模型模拟的结果与实验结果误差小于10%. 该理论模型可以用于指导新型折叠波导行波管的设计及非线性模拟研究.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回