搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径

范洪义 梁祖峰

相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径

范洪义, 梁祖峰
PDF
导出引用
导出核心图
  • 本文指出相空间中存在有对应量子力学基本对易关系积分变换, 其积分核是1/exp[2i(q-Q) (p-P), 其中 表示Weyl 排序, Q, P是坐标算符和动量算符, 其功能是负责算符的三种常用排序(P-Q排序、Q-P排序和Weyl 排序)规则之间的相互转化. 此外, 还导出了此积分核与Wigner 算符之间的关系, 以及Wigner函数在这类积分变换下的性质及用途.
    • 基金项目: 国家自然科学基金(批准号: 11175113, 11275123)资助的课题.
    [1]

    Dragoman D 2002 Progress In Optics 42 424

    [2]

    Dragoman D, Dragoman M 1999 Prog. Quantum Electron. 23 131

    [3]

    Crasser O, Mack H, Schleich W P 2004 Fluct. Noise Lett. 04 L43

    [4]

    Nienhuis G, Allen L 1993 Phys. Rev. A 48 656

    [5]

    Wolf K B and Kurmyshev E V 1993 Phys. Rev. A 47 3365

    [6]

    Dirac P A M 1930 The Principle of Quantum Mechanics (Oxford: Clarendon Press)

    [7]

    L C H, Fan H Y, Jiang N Q 2010 Chin. Phys. B 19 120303

    [8]

    Fan H Y 2003 Phys. Lett. A 313 343

    [9]

    Meng X G, Wang J S, Liang B L 2011 Chin. Phys. B 20 014204

    [10]

    Weyl H 1927 Z. Phys. 46 1

    [11]

    Wigner E 1932 Phys. Rev. 40 749

    [12]

    Wang J S, Fan H Y, Meng X G 2012 Chin. Phys. B 21 064204

    [13]

    Fan H Y 1992 J. Phys. A 25 3443

    [14]

    Fan H Y 1997 Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics—Progress of Dirac's Symbolic Method (Shanghai: Shanghai Scientific & Technical Publishers) (in Chinese) [范洪义1997 量子力学表象与变换论-狄拉克符号法进展(上海: 上海科技出版社)

    [15]

    Fan H Y 2008 Commun. Theor. Phys. 50 935

    [16]

    Fan H Y 2013 Acta Phys. Sin. 62 020302 (in Chinese) [范洪义 2013 物理学报 62 020302]

  • [1]

    Dragoman D 2002 Progress In Optics 42 424

    [2]

    Dragoman D, Dragoman M 1999 Prog. Quantum Electron. 23 131

    [3]

    Crasser O, Mack H, Schleich W P 2004 Fluct. Noise Lett. 04 L43

    [4]

    Nienhuis G, Allen L 1993 Phys. Rev. A 48 656

    [5]

    Wolf K B and Kurmyshev E V 1993 Phys. Rev. A 47 3365

    [6]

    Dirac P A M 1930 The Principle of Quantum Mechanics (Oxford: Clarendon Press)

    [7]

    L C H, Fan H Y, Jiang N Q 2010 Chin. Phys. B 19 120303

    [8]

    Fan H Y 2003 Phys. Lett. A 313 343

    [9]

    Meng X G, Wang J S, Liang B L 2011 Chin. Phys. B 20 014204

    [10]

    Weyl H 1927 Z. Phys. 46 1

    [11]

    Wigner E 1932 Phys. Rev. 40 749

    [12]

    Wang J S, Fan H Y, Meng X G 2012 Chin. Phys. B 21 064204

    [13]

    Fan H Y 1992 J. Phys. A 25 3443

    [14]

    Fan H Y 1997 Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics—Progress of Dirac's Symbolic Method (Shanghai: Shanghai Scientific & Technical Publishers) (in Chinese) [范洪义1997 量子力学表象与变换论-狄拉克符号法进展(上海: 上海科技出版社)

    [15]

    Fan H Y 2008 Commun. Theor. Phys. 50 935

    [16]

    Fan H Y 2013 Acta Phys. Sin. 62 020302 (in Chinese) [范洪义 2013 物理学报 62 020302]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1615
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-11
  • 修回日期:  2014-10-08
  • 刊出日期:  2015-03-05

相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径

  • 1. 宁波大学, 物理系, 宁波 315211;
  • 2. 杭州师范大学, 理学院, 杭州 310036
    基金项目: 

    国家自然科学基金(批准号: 11175113, 11275123)资助的课题.

摘要: 本文指出相空间中存在有对应量子力学基本对易关系积分变换, 其积分核是1/exp[2i(q-Q) (p-P), 其中 表示Weyl 排序, Q, P是坐标算符和动量算符, 其功能是负责算符的三种常用排序(P-Q排序、Q-P排序和Weyl 排序)规则之间的相互转化. 此外, 还导出了此积分核与Wigner 算符之间的关系, 以及Wigner函数在这类积分变换下的性质及用途.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回