搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究

陈鸿 兰慧 陈子琪 刘璐宁 吴涛 左都罗 陆培祥 王新兵

脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究

陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵
PDF
导出引用
  • 采用波长13.5 nm的极紫外光作为曝光光源的极紫外光刻技术是最有潜力的下一代光刻技术之一, 它是半导体制造实现10 nm及以下节点的关键技术. 获得极紫外辐射的方法中, 激光等离子体光源凭借转换效率高、收集角度大、碎屑产量低等优点而被认为是最有前途的极紫外光源. 本文开展了脉冲TEA-CO2激光和Nd:YAG激光辐照液滴锡靶产生极紫外辐射的实验, 对极紫外辐射的谱线结构以及辐射的时空分布特性进行了研究.实验发现: 与TEA-CO2激光相比, 较高功率密度的Nd:YAG激光激发的极紫外辐射谱存在明显的蓝移; 并且激光等离子体光源可以认为是点状光源, 其极紫外辐射强度随空间角度变化近似满足Lambertian分布.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11304235)资助的课题.
    [1]

    Bakshi V 2009 EUV lithography (Bellingham: Spie Press) pp104

    [2]

    Brandt D C, Fomenkov I V, Farrar N R, Fontaine B L, Myers D W, Brown D J, Ershov A I, Böwering N R, Riggs D J, Rafac R J, Dea S D, Peeters R, Meiling H, Harned N, Smith D, Pirati A, Kazinczi R 2014 Extreme Ultraviolet (EUV) Lithography V90480C San Jose, California, United States, February 23-27 2014

    [3]

    Mizoguchi H, Nakarai H, Abe T, Ohta T, Nowak K M, Kawasuji Y, Tanaka H, Watanabe Y, Hori T, Kodama T, Shiraishi Y, Yanagida T, Yamada T, Yamazaki T, Okazaki S, Saitou T 2014 Extreme Ultraviolet (EUV) Lithography V 90480D San Jose, California, United States, February 23-27 2014

    [4]

    Abhari R S, Rollinger B, Giovannini A Z, Morris O, Henderson I, Ellwi S S 2012 Journal of MicroNanolithography, MEMS, MOEMS 11 021114

    [5]

    Giovannini A Z, Abhari R S 2013 Journal of Applied Physics 114 033303

    [6]

    Masnavi M, Szilagyi J, Parchamy H, Richardson M C 2013 Applied Physics Letters 102 164102

    [7]

    Ni Q L 2003 Ph. D. Dissertation (Changchun: University of Chinese Academy of Sciences) (in Chinese) [尼启良 2003 博士学位论文 (长春: 中国科学院研究生院, 长春光学精密机械与物理研究所)]

    [8]

    Jin C S, Wang Z S, Cao J L 2000 Optics and Precision Engineering 8 66 (in Chinese) [金春水, 王占山, 曹健林 2000 光学精密工程 8 66]

    [9]

    Cai Y, Wang W T, Yang M, Liu H S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100 (in Chinese) [蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 物理学报 57 5100]

    [10]

    Zhao Y P, Xu Q, Xiao D L, Ding N, Xie Y, Li Q, Wang Q 2013 Acta Phys. Sin. 62 245204 (in Chinese) [赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐 2013 物理学报 62 245204]

    [11]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202

    [12]

    Wang H C, Wang Z S, Li F S, Qin S J, Du Y, Wang L, Zhang Z, Chen L Y 2004 Acta Phys. Sin. 53 2368 (in Chinese) [王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕 2004 物理学报 53 2368]

    [13]

    Wu T, Wang X B, Wang S Y, Tang J, Lu P X, Lu H 2012 Journal of Applied Physics 111 063304

    [14]

    Wu T, Wang X B, Tang J, Rao Z M, Wang S Y 2011 Laser Technology 35 800 (in Chinese) [吴涛, 王新兵, 唐建, 饶志明, 王少义 2011 激光技术 35 800]

    [15]

    Wu H Y, Wu Y G, Wang Z H, Lu G, Ling L J, Xia Z H, Chen N B 2011 Acta Photonica Sinica 40 0001 (in Chinese) [伍和云, 吴永刚, 王振华, 吕刚, 凌磊婕, 夏子奂, 陈乃波 2011 光子学报 40 0001]

    [16]

    Bob R, Luna B, Nadia G, Abhari R S 2012 Extreme Ultraviolet Lithography III 83222P San Jose, California United States, February 12 2012

    [17]

    Wang J L, Chen W W, Cai L, Ma Y R, Liu Y S, Lv G S, Shao M J, Jin Y Q, Sang F T 2006 High Power Laser and Particle Beams 18 935 (in Chinese) [王景龙, 陈文武, 蔡龙, 马月仁, 刘宇时, 吕国盛, 邵明君, 金玉奇, 桑凤亭 2006 强激光与粒子束 18 935]

    [18]

    Cui Y Q, Wang W M, Sheng Z M, Li Y T, Zhang J 2013 Plasma Physics and Controlled Fusion 55 085008

    [19]

    Bakshi V 2006 EUV Sources for Lithography (Bellingham, WA: Spie Press) p113

  • [1]

    Bakshi V 2009 EUV lithography (Bellingham: Spie Press) pp104

    [2]

    Brandt D C, Fomenkov I V, Farrar N R, Fontaine B L, Myers D W, Brown D J, Ershov A I, Böwering N R, Riggs D J, Rafac R J, Dea S D, Peeters R, Meiling H, Harned N, Smith D, Pirati A, Kazinczi R 2014 Extreme Ultraviolet (EUV) Lithography V90480C San Jose, California, United States, February 23-27 2014

    [3]

    Mizoguchi H, Nakarai H, Abe T, Ohta T, Nowak K M, Kawasuji Y, Tanaka H, Watanabe Y, Hori T, Kodama T, Shiraishi Y, Yanagida T, Yamada T, Yamazaki T, Okazaki S, Saitou T 2014 Extreme Ultraviolet (EUV) Lithography V 90480D San Jose, California, United States, February 23-27 2014

    [4]

    Abhari R S, Rollinger B, Giovannini A Z, Morris O, Henderson I, Ellwi S S 2012 Journal of MicroNanolithography, MEMS, MOEMS 11 021114

    [5]

    Giovannini A Z, Abhari R S 2013 Journal of Applied Physics 114 033303

    [6]

    Masnavi M, Szilagyi J, Parchamy H, Richardson M C 2013 Applied Physics Letters 102 164102

    [7]

    Ni Q L 2003 Ph. D. Dissertation (Changchun: University of Chinese Academy of Sciences) (in Chinese) [尼启良 2003 博士学位论文 (长春: 中国科学院研究生院, 长春光学精密机械与物理研究所)]

    [8]

    Jin C S, Wang Z S, Cao J L 2000 Optics and Precision Engineering 8 66 (in Chinese) [金春水, 王占山, 曹健林 2000 光学精密工程 8 66]

    [9]

    Cai Y, Wang W T, Yang M, Liu H S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100 (in Chinese) [蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 物理学报 57 5100]

    [10]

    Zhao Y P, Xu Q, Xiao D L, Ding N, Xie Y, Li Q, Wang Q 2013 Acta Phys. Sin. 62 245204 (in Chinese) [赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐 2013 物理学报 62 245204]

    [11]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202

    [12]

    Wang H C, Wang Z S, Li F S, Qin S J, Du Y, Wang L, Zhang Z, Chen L Y 2004 Acta Phys. Sin. 53 2368 (in Chinese) [王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕 2004 物理学报 53 2368]

    [13]

    Wu T, Wang X B, Wang S Y, Tang J, Lu P X, Lu H 2012 Journal of Applied Physics 111 063304

    [14]

    Wu T, Wang X B, Tang J, Rao Z M, Wang S Y 2011 Laser Technology 35 800 (in Chinese) [吴涛, 王新兵, 唐建, 饶志明, 王少义 2011 激光技术 35 800]

    [15]

    Wu H Y, Wu Y G, Wang Z H, Lu G, Ling L J, Xia Z H, Chen N B 2011 Acta Photonica Sinica 40 0001 (in Chinese) [伍和云, 吴永刚, 王振华, 吕刚, 凌磊婕, 夏子奂, 陈乃波 2011 光子学报 40 0001]

    [16]

    Bob R, Luna B, Nadia G, Abhari R S 2012 Extreme Ultraviolet Lithography III 83222P San Jose, California United States, February 12 2012

    [17]

    Wang J L, Chen W W, Cai L, Ma Y R, Liu Y S, Lv G S, Shao M J, Jin Y Q, Sang F T 2006 High Power Laser and Particle Beams 18 935 (in Chinese) [王景龙, 陈文武, 蔡龙, 马月仁, 刘宇时, 吕国盛, 邵明君, 金玉奇, 桑凤亭 2006 强激光与粒子束 18 935]

    [18]

    Cui Y Q, Wang W M, Sheng Z M, Li Y T, Zhang J 2013 Plasma Physics and Controlled Fusion 55 085008

    [19]

    Bakshi V 2006 EUV Sources for Lithography (Bellingham, WA: Spie Press) p113

  • [1] 窦银萍, 谢卓, 宋晓林, 田勇, 林景全. Gd靶激光等离子体6.7nm光源的实验研究. 物理学报, 2015, 64(23): 235202. doi: 10.7498/aps.64.235202
    [2] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
    [3] 王薇, 张杰, V.K.Senecha. 对激光等离子体中X射线的产生与辐射加热研究. 物理学报, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [4] 纪运景, 卞保民, 童朝霞, 陆 建. 靶材偏置低电压对激光等离子体诱导靶上电势信号的影响. 物理学报, 2008, 57(2): 980-984. doi: 10.7498/aps.57.980
    [5] 张杰, 王薇. 数值模拟辐射场对激光等离子体中物理过程的影响. 物理学报, 2001, 50(8): 1517-1520. doi: 10.7498/aps.50.1517
    [6] 郑志远, 张 杰, 郝作强, 远晓辉, 张 喆, 鲁 欣, 王兆华, 魏志义. 靶结构对激光等离子体动量耦合系数的影响. 物理学报, 2006, 55(1): 326-330. doi: 10.7498/aps.55.326
    [7] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [8] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [9] 孙可煦, 黄天晅, 丁永坤, 易荣清, 江少恩, 崔延莉, 汤晓青, 陈久森, 张保汉, 郑志坚. 黑腔靶辐射温度实验研究. 物理学报, 2002, 51(8): 1750-1754. doi: 10.7498/aps.51.1750
    [10] 张继彦, 杨家敏, 杨国洪, 丁耀南, 李军, 颜君, 吴泽清, 丁永坤, 张保汉, 郑志坚. 激光直接加热自背光法辐射不透明度测量方法探索. 物理学报, 2013, 62(19): 195201. doi: 10.7498/aps.62.195201
    [11] 王 薇, 张 杰, 董全力, V.K.Senecha. 靶的厚度对激光产生的x射线输运到靶后能谱的影响. 物理学报, 2004, 53(3): 967-972. doi: 10.7498/aps.53.967
    [12] 王 薇, 张 杰, 赵 刚. 普朗克谱分布的辐射场对束缚电子布居的影响. 物理学报, 2008, 57(3): 1759-1764. doi: 10.7498/aps.57.1759
    [13] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [14] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [15] 张秋菊, 盛政明, 苍 宇, 张 杰. 激光脉冲诱导的等离子体密度调制及其产生的相位反射. 物理学报, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [16] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [17] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [18] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [19] 王 薇, 张 杰, 赵 刚. 吸积盘的X射线辐射对周围星际物质的离化研究. 物理学报, 2006, 55(1): 287-293. doi: 10.7498/aps.55.287
    [20] 韩波, 梁雅琼. 质子成像法测量电容线圈靶磁场. 物理学报, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1550
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-10
  • 修回日期:  2014-10-09
  • 刊出日期:  2015-04-05

脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究

  • 1. 华中科技大学, 光学与电子信息学院, 武汉 430074;
  • 2. 华中科技大学, 武汉光电国家实验室, 武汉 430074;
  • 3. 武汉工程大学, 理学院, 武汉 430073
    基金项目: 

    国家自然科学基金青年科学基金(批准号: 11304235)资助的课题.

摘要: 采用波长13.5 nm的极紫外光作为曝光光源的极紫外光刻技术是最有潜力的下一代光刻技术之一, 它是半导体制造实现10 nm及以下节点的关键技术. 获得极紫外辐射的方法中, 激光等离子体光源凭借转换效率高、收集角度大、碎屑产量低等优点而被认为是最有前途的极紫外光源. 本文开展了脉冲TEA-CO2激光和Nd:YAG激光辐照液滴锡靶产生极紫外辐射的实验, 对极紫外辐射的谱线结构以及辐射的时空分布特性进行了研究.实验发现: 与TEA-CO2激光相比, 较高功率密度的Nd:YAG激光激发的极紫外辐射谱存在明显的蓝移; 并且激光等离子体光源可以认为是点状光源, 其极紫外辐射强度随空间角度变化近似满足Lambertian分布.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回