搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究

王祥 钞润泽 管仁国 李元东 刘春明

金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究

王祥, 钞润泽, 管仁国, 李元东, 刘春明
PDF
导出引用
导出核心图
  • 本文建立了金属熔体近壁面流动剪切模型, 并分析了流动剪切对金属凝固的影响. 针对A356合金计算结果表明:层流流动的熔体内部剪应力随垂直斜板表面距离的增大而减小, 随着流动长度的增加先急剧下降之后趋于稳定; 紊流流动的熔体所受的剪应力随着垂直倾斜板表面距离的增大先急剧下降之后趋于稳定, 随着流动长度的增加而不断增大; 斜板倾角越大, 斜板上相同位置的熔体层受到的剪应力越大; 熔体垂直斜板表面距离越小, 柱状晶所承受的弯曲应力越大; 斜角越大, 斜板上相同位置的柱状晶的弯曲应力越大; 随着熔体在倾斜板表面流动长度的增加, 在层流阶段, 倾斜板表面柱状晶根部所受的弯曲应力先急剧下降之后趋于平稳, 而在紊流阶段, 弯曲应力是缓慢增加的; 理论分析表明柱状晶在熔体近壁面流动过程受到的最大弯曲应力低于αup -Al晶粒的屈服强度, 所以斜板上熔体流动产生的弯曲力不能将柱状晶折断, 只能将晶粒冲刷游离到熔体中使晶粒增殖, 与实验结果相符合. 所以本模型可以很好地解释熔体近壁面流动过程中的剪切本构关系以及剪应力对凝固组织的影响.
    • 基金项目: 国家自然科学基金(批准号:51222405,51474063)资助的课题.
    [1]

    Yan Z M, Li X T, Cao Z Q, Zhang X L, Li T J 2008 Mater. Lett. 62 4389

    [2]

    Zhang Z T, Li J, Yue H Y, Zhang J, Li T J 2009 J. Alloy Compd. 484 458

    [3]

    Mahapatra R B 1991 Metall. Trans. B22 862

    [4]

    Cao Z Q, Jia F, Zhang X G, Hao H, Jin J Z 2002 Mat. Sci. Eng. A 327 133

    [5]

    Li W X, Yu Z, Deng K, Lei Z S, Cheng Z K, Ren Z M 2008 T. Nonferr. Metal Soc. 18 1058

    [6]

    Chen M W, He G W, Chen X Y, Wang Z D 2012 CHin. Phys. B 21 1

    [7]

    Feng L, Wang Z P, Zhu C S, Lu Y 2009 CHin. Phys. B 18 1985

    [8]

    Guan R G, Zhao Z Y, Huang H Q, Lian C, Chao R Z, Liu C M 2012 Acta Phys. Sin. 61 206602 (in Chinese) [管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明 2012 物理学报 61 206602]

    [9]

    Guan R G, Zhao Z Y, Chao R Z, Zhao H L, Liu C M 2013 T. Nonferr. Metal Soc. 23 73

    [10]

    Haga T, Nakamura R, Tago R, Watari H 2010 T. Nonferr. Metal Soc. 20 968

    [11]

    Haga T, Tkahashi K, Ikawaand M, Tatari H 2004 T. Nonferr. Metal Soc. 153-154 42

    [12]

    Kund N K, Dutta P 2010 T. Nonferr. Metal Soc. 20 898

    [13]

    Behnam A A, Hossein A 2010 J. Mater. Process. Tech. 210 1632

    [14]

    Kapranos P, Liu T Y, Atkinson H V, Kirkwood D H 2001 J. Mater. Process. Tech. 111 31

    [15]

    Du C, Xu M Y, Mi J C 2010 Acta Phys. Sin 59 6331 (in Chinese) [杜诚, 徐敏义, 米建春 2010 物理学报 59 6331]

    [16]

    Shen Y S, Li B W, Wu M L 2000 Basic Principles of Metallurgical Transmission (Beijing:Metallurgical Industry Press) p5-210 (in Chinese) [沈颐身, 李保卫, 吴懋林 2000 冶金传输原理基础(北京:冶金工业出版社)第5-210页]

    [17]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]

    [18]

    Dahle A K, Arnberg L 1997 Acta Metall. 45 547

    [19]

    Guo D Y, Yang Y S, Tong W H, Hua F A, Cheng G F, Hu Z Q 2003 Acta Metall. Sin. 39 914

  • [1]

    Yan Z M, Li X T, Cao Z Q, Zhang X L, Li T J 2008 Mater. Lett. 62 4389

    [2]

    Zhang Z T, Li J, Yue H Y, Zhang J, Li T J 2009 J. Alloy Compd. 484 458

    [3]

    Mahapatra R B 1991 Metall. Trans. B22 862

    [4]

    Cao Z Q, Jia F, Zhang X G, Hao H, Jin J Z 2002 Mat. Sci. Eng. A 327 133

    [5]

    Li W X, Yu Z, Deng K, Lei Z S, Cheng Z K, Ren Z M 2008 T. Nonferr. Metal Soc. 18 1058

    [6]

    Chen M W, He G W, Chen X Y, Wang Z D 2012 CHin. Phys. B 21 1

    [7]

    Feng L, Wang Z P, Zhu C S, Lu Y 2009 CHin. Phys. B 18 1985

    [8]

    Guan R G, Zhao Z Y, Huang H Q, Lian C, Chao R Z, Liu C M 2012 Acta Phys. Sin. 61 206602 (in Chinese) [管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明 2012 物理学报 61 206602]

    [9]

    Guan R G, Zhao Z Y, Chao R Z, Zhao H L, Liu C M 2013 T. Nonferr. Metal Soc. 23 73

    [10]

    Haga T, Nakamura R, Tago R, Watari H 2010 T. Nonferr. Metal Soc. 20 968

    [11]

    Haga T, Tkahashi K, Ikawaand M, Tatari H 2004 T. Nonferr. Metal Soc. 153-154 42

    [12]

    Kund N K, Dutta P 2010 T. Nonferr. Metal Soc. 20 898

    [13]

    Behnam A A, Hossein A 2010 J. Mater. Process. Tech. 210 1632

    [14]

    Kapranos P, Liu T Y, Atkinson H V, Kirkwood D H 2001 J. Mater. Process. Tech. 111 31

    [15]

    Du C, Xu M Y, Mi J C 2010 Acta Phys. Sin 59 6331 (in Chinese) [杜诚, 徐敏义, 米建春 2010 物理学报 59 6331]

    [16]

    Shen Y S, Li B W, Wu M L 2000 Basic Principles of Metallurgical Transmission (Beijing:Metallurgical Industry Press) p5-210 (in Chinese) [沈颐身, 李保卫, 吴懋林 2000 冶金传输原理基础(北京:冶金工业出版社)第5-210页]

    [17]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]

    [18]

    Dahle A K, Arnberg L 1997 Acta Metall. 45 547

    [19]

    Guo D Y, Yang Y S, Tong W H, Hua F A, Cheng G F, Hu Z Q 2003 Acta Metall. Sin. 39 914

  • [1] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [2] 苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成. 强磁场对Mn-Sb包晶合金相变及凝固组织的影响. 物理学报, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [3] 孟广慧, 林鑫. 二元层片共晶凝固过程的特征尺度选择. 物理学报, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [4] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型 . 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [5] 李 强, 李殿中, 钱百年. 元胞自动机方法模拟枝晶生长. 物理学报, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [6] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [7] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展. 物理学报, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [8] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [9] Y. Inatomi, 黄卫东, 林 鑫, 李 涛, 王琳琳. 单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比. 物理学报, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
    [10] 张林, 张彩碚, 祁阳, 徐送宁. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [11] 张宗宁, 刘美林, 李蔚, 耿长建, 张林, 赵骞. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [12] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [13] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固. 物理学报, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
    [14] 李国建, 王强, 曹永泽, 吕逍, 李东刚, 赫冀成. 初始温度和冷却速率对金属团簇凝固行为的影响. 物理学报, 2011, 60(9): 093601. doi: 10.7498/aps.60.093601
    [15] 张松鹏, 张向军, 田煜, 孟永钢. 采用液晶涂层测量介质流与壁面间剪切应力的定量模型与试验研究. 物理学报, 2012, 61(23): 234702. doi: 10.7498/aps.61.234702
    [16] 张冉, 谢文佳, 常青, 李桦. 纳米通道内气体剪切流动的分子动力学模拟. 物理学报, 2018, 67(8): 084701. doi: 10.7498/aps.67.20172706
    [17] 赵雪川, 刘小明, 高原, 庄茁. 剪切作用下Cu(100)扭转晶界塑性行为研究. 物理学报, 2010, 59(9): 6362-6368. doi: 10.7498/aps.59.6362
    [18] 刘俊明. 层状共晶定向凝固. 物理学报, 1992, 41(5): 861-868. doi: 10.7498/aps.41.861
    [19] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究. 物理学报, 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [20] 高越, 符师桦, 蔡玉龙, 程腾, 张青川. 数字剪切散斑干涉法研究铝合金中Portevin-Le Chatelier 带的离面变形行为. 物理学报, 2014, 63(6): 066201. doi: 10.7498/aps.63.066201
  • 引用本文:
    Citation:
计量
  • 文章访问数:  571
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-18
  • 修回日期:  2015-01-06
  • 刊出日期:  2015-06-05

金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究

  • 1. 东北大学材料与冶金学院, 沈阳 110819;
  • 2. 中国船舶重工集团公司第七二五研究所, 洛阳 471000;
  • 3. 兰州理工大学材料科学与工程学院, 兰州 730050
    基金项目: 

    国家自然科学基金(批准号:51222405,51474063)资助的课题.

摘要: 本文建立了金属熔体近壁面流动剪切模型, 并分析了流动剪切对金属凝固的影响. 针对A356合金计算结果表明:层流流动的熔体内部剪应力随垂直斜板表面距离的增大而减小, 随着流动长度的增加先急剧下降之后趋于稳定; 紊流流动的熔体所受的剪应力随着垂直倾斜板表面距离的增大先急剧下降之后趋于稳定, 随着流动长度的增加而不断增大; 斜板倾角越大, 斜板上相同位置的熔体层受到的剪应力越大; 熔体垂直斜板表面距离越小, 柱状晶所承受的弯曲应力越大; 斜角越大, 斜板上相同位置的柱状晶的弯曲应力越大; 随着熔体在倾斜板表面流动长度的增加, 在层流阶段, 倾斜板表面柱状晶根部所受的弯曲应力先急剧下降之后趋于平稳, 而在紊流阶段, 弯曲应力是缓慢增加的; 理论分析表明柱状晶在熔体近壁面流动过程受到的最大弯曲应力低于αup -Al晶粒的屈服强度, 所以斜板上熔体流动产生的弯曲力不能将柱状晶折断, 只能将晶粒冲刷游离到熔体中使晶粒增殖, 与实验结果相符合. 所以本模型可以很好地解释熔体近壁面流动过程中的剪切本构关系以及剪应力对凝固组织的影响.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回