搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单模光腔中N个二能级原子系统的有限温度特性和相变

贾树芳 梁九卿

单模光腔中N个二能级原子系统的有限温度特性和相变

贾树芳, 梁九卿
PDF
导出引用
导出核心图
  • 本文研究单模光场中N个二能级原子Dicke模型的有限温度特性和相变. 把原子赝自旋转换为双模费米算符, 用虚时路径积分方法推导出系统的配分函数, 对作用量变分求极值得到系统的热力学平衡方程, 及原子布居数期待值和平均光子数随原子-光场耦合强度变化的解析表达式. 重点研究了在量子涨落起主导作用的低温区, 由耦合强度变化产生的从正常相到超辐射相的相变, 指出该相变遵从Landau连续相变理论, 平均光子数可作为序参数, 零值表示正常相, 大于零则为超辐射相. 在零温极限下本文的结果和量子相变理论完全符合. 另外, 本文也讨论了系统的热力学性质, 比较有限温度相变和量子相变的异同. 发现, 在强耦合区低温稳定态的光子数和平均能量都和绝对零度的值趋于一致, 而超辐射相的熵则随耦合强度的增强迅速衰减为零.
    • 基金项目: 国家自然科学基金(批准号:11275118)资助的课题.
    [1]

    Dicke R H 1954 Phys. Rev. 93 99

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press) p196

    [3]

    Jurčo B 1989 J. Math. Phys. 30 1289

    [4]

    Bogoliubov N M, Bullough R K, Timonen J 1996 J. Phys. A: Math. Gen. 29 6305

    [5]

    Amico L, Hikami K 2005 Eur. Phys. J. B 43 387

    [6]

    Klein A, Marshalek E R 1991 Rev. Mod. Phys. 63 375

    [7]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2010 物理学报 59 3695]

    [8]

    Weiss U 2008 Quantum Dissipative Systems (Singapore:World Scientific) p31

    [9]

    Carollo A C M, Pachos J K 2005 Phys. Rev. Lett. 95 157203

    [10]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [11]

    Zhu S L 2006 Physics 35 11 (in Chinese) [朱诗亮 2006 物理 35 11]

    [12]

    Vidal G, Lorre J I, Rico E, atKitaev A 2003 Phys. Rev. Lett. 90 227902

    [13]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 物理学报 60 020302]

    [14]

    Hioes F T 1973 Phys. Rev. A 8 1440

    [15]

    Sachdev S 1999 Quantum Phase Transitions(UK:Cambridge University Press)

    [16]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [17]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831

    [18]

    Emary Clive, Brandes Tobias 2003 Phys. Rev. E67 066203

    [19]

    Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101

    [20]

    Yang X Y, Xue H B, Liang J Q 2013 Acta Phys. Sin. 62 114205 (in Chinese) [杨晓勇, 薛海斌, 梁九卿 2013 物理学报 62 114205]

    [21]

    Lian J L, Zhang Y W, Liang J Q 2012 Chin. Phys. Lett. 29 060302

    [22]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A 90 023622

    [23]

    Yu L X, Liang Q F, Wang L R, Zhu S Q 2014 Acta Phys. Sin. 63 134204 (in Chinese) [俞立先, 梁奇锋, 汪丽蓉, 朱士群 2014 物理学报 63 134204]

    [24]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [25]

    Bastidas V M, Emary C, Regler B, Brandes T 2012 Phys. Rev. Lett. 108 043003

    [26]

    Nagy D, Kónya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401

    [27]

    Zhang Y W, Lian J L, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 87 013616

    [28]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 053623

    [29]

    Liu N, Lian J L, Ma J, Xiao L T, Chen G, Liang J Q, Jia S T 2011 Phys. Rev. A 83 033601

    [30]

    Popov V N, Fedotov S A 1982 Theor. Math. Phys 51 73

    [31]

    Aparicio Alcalde M, de Lemos A L L, Svaiter N F 2007 J. Phys. A :Math. Theor 40 11961

    [32]

    Popov V N, Fedotov S A 1988 Sov. Phys. JETP 67 535

    [33]

    Aparicio Alcalde M, Pimentel B M 2011 Physic A 390 3385

    [34]

    Kir'yanov V B, Yarunin V S 1982 Teoret. Mat. Fiz 51 456

    [35]

    Liang J Q, Wei L F 2011 Advances In Quantum Physics (Beijing: Science Press) p95 (in Chinese) [梁九卿, 韦联福 2011 量子物理新进展(北京: 科学出版社)第95页]

  • [1]

    Dicke R H 1954 Phys. Rev. 93 99

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press) p196

    [3]

    Jurčo B 1989 J. Math. Phys. 30 1289

    [4]

    Bogoliubov N M, Bullough R K, Timonen J 1996 J. Phys. A: Math. Gen. 29 6305

    [5]

    Amico L, Hikami K 2005 Eur. Phys. J. B 43 387

    [6]

    Klein A, Marshalek E R 1991 Rev. Mod. Phys. 63 375

    [7]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2010 物理学报 59 3695]

    [8]

    Weiss U 2008 Quantum Dissipative Systems (Singapore:World Scientific) p31

    [9]

    Carollo A C M, Pachos J K 2005 Phys. Rev. Lett. 95 157203

    [10]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [11]

    Zhu S L 2006 Physics 35 11 (in Chinese) [朱诗亮 2006 物理 35 11]

    [12]

    Vidal G, Lorre J I, Rico E, atKitaev A 2003 Phys. Rev. Lett. 90 227902

    [13]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 物理学报 60 020302]

    [14]

    Hioes F T 1973 Phys. Rev. A 8 1440

    [15]

    Sachdev S 1999 Quantum Phase Transitions(UK:Cambridge University Press)

    [16]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [17]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831

    [18]

    Emary Clive, Brandes Tobias 2003 Phys. Rev. E67 066203

    [19]

    Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101

    [20]

    Yang X Y, Xue H B, Liang J Q 2013 Acta Phys. Sin. 62 114205 (in Chinese) [杨晓勇, 薛海斌, 梁九卿 2013 物理学报 62 114205]

    [21]

    Lian J L, Zhang Y W, Liang J Q 2012 Chin. Phys. Lett. 29 060302

    [22]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A 90 023622

    [23]

    Yu L X, Liang Q F, Wang L R, Zhu S Q 2014 Acta Phys. Sin. 63 134204 (in Chinese) [俞立先, 梁奇锋, 汪丽蓉, 朱士群 2014 物理学报 63 134204]

    [24]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [25]

    Bastidas V M, Emary C, Regler B, Brandes T 2012 Phys. Rev. Lett. 108 043003

    [26]

    Nagy D, Kónya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401

    [27]

    Zhang Y W, Lian J L, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 87 013616

    [28]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 053623

    [29]

    Liu N, Lian J L, Ma J, Xiao L T, Chen G, Liang J Q, Jia S T 2011 Phys. Rev. A 83 033601

    [30]

    Popov V N, Fedotov S A 1982 Theor. Math. Phys 51 73

    [31]

    Aparicio Alcalde M, de Lemos A L L, Svaiter N F 2007 J. Phys. A :Math. Theor 40 11961

    [32]

    Popov V N, Fedotov S A 1988 Sov. Phys. JETP 67 535

    [33]

    Aparicio Alcalde M, Pimentel B M 2011 Physic A 390 3385

    [34]

    Kir'yanov V B, Yarunin V S 1982 Teoret. Mat. Fiz 51 456

    [35]

    Liang J Q, Wei L F 2011 Advances In Quantum Physics (Beijing: Science Press) p95 (in Chinese) [梁九卿, 韦联福 2011 量子物理新进展(北京: 科学出版社)第95页]

  • [1] 刘妮, 梁九卿. 含时驱动的Dicke模型的混沌特性. 物理学报, 2017, 66(11): 110502. doi: 10.7498/aps.66.110502
    [2] 刘妮, 黄珊, 李军奇, 梁九卿. 有限温度下腔光机械系统中N个二能级原子的相变和热力学性质. 物理学报, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [3] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系. 物理学报, 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [4] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子混沌和单粒子相干动力学特性. 物理学报, 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [5] 樊华, 李理, 袁坚, 山秀明. 互联网流量控制的朗之万模型及相变分析. 物理学报, 2009, 58(11): 7507-7513. doi: 10.7498/aps.58.7507
    [6] 韩秀琴, 姜虹, 石玉仁, 刘妍秀, 孙建华, 陈建敏, 段文山. 一维 Frenkel-Kontorova(FK)模型原子链的相变研究. 物理学报, 2011, 60(11): 116801. doi: 10.7498/aps.60.116801
    [7] 李炎, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏. Erds Rnyi随机网络上爆炸渗流模型相变性质的数值模拟研究. 物理学报, 2013, 62(4): 046401. doi: 10.7498/aps.62.046401
    [8] 张晋鲁, 李玉强, 赵兴宇, 黄以能. 用Weiss分子场理论对有外电场时铁电体系相变特征的研究. 物理学报, 2012, 61(14): 140501. doi: 10.7498/aps.61.140501
    [9] 吉世印, 石筑一. 微观核芯+两准粒子模型中热核148—158Sm的比热容及其相变. 物理学报, 2003, 52(1): 42-47. doi: 10.7498/aps.52.42
    [10] 王参军. 随机基因选择模型中的延迟效应 . 物理学报, 2012, 61(5): 050501. doi: 10.7498/aps.61.050501
    [11] 毛斌斌, 程晨, 陈富州, 罗洪刚. 一维扩展t-J模型中密度-自旋相互作用诱导的相分离. 物理学报, 2015, 64(18): 187105. doi: 10.7498/aps.64.187105
    [12] 谭惠丽, 刘慕仁, 孔令江. 开放边界条件下改进的Nagel-Schreckenberg交通流模型的研究. 物理学报, 2002, 51(12): 2713-2718. doi: 10.7498/aps.51.2713
    [13] 黄乒花, 谭惠丽, 孔令江, 刘慕仁. 开放边界条件下二维可转向主干道交通流模型的研究. 物理学报, 2005, 54(7): 3044-3050. doi: 10.7498/aps.54.3044
    [14] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [15] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [16] L. Gerward, 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [19] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [20] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
  • 引用本文:
    Citation:
计量
  • 文章访问数:  608
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-03-12
  • 刊出日期:  2015-07-05

单模光腔中N个二能级原子系统的有限温度特性和相变

  • 1. 山西大学理论物理研究所, 太原 030006
    基金项目: 

    国家自然科学基金(批准号:11275118)资助的课题.

摘要: 本文研究单模光场中N个二能级原子Dicke模型的有限温度特性和相变. 把原子赝自旋转换为双模费米算符, 用虚时路径积分方法推导出系统的配分函数, 对作用量变分求极值得到系统的热力学平衡方程, 及原子布居数期待值和平均光子数随原子-光场耦合强度变化的解析表达式. 重点研究了在量子涨落起主导作用的低温区, 由耦合强度变化产生的从正常相到超辐射相的相变, 指出该相变遵从Landau连续相变理论, 平均光子数可作为序参数, 零值表示正常相, 大于零则为超辐射相. 在零温极限下本文的结果和量子相变理论完全符合. 另外, 本文也讨论了系统的热力学性质, 比较有限温度相变和量子相变的异同. 发现, 在强耦合区低温稳定态的光子数和平均能量都和绝对零度的值趋于一致, 而超辐射相的熵则随耦合强度的增强迅速衰减为零.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回