搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性

刘畅 卢继武 吴汪然 唐晓雨 张睿 俞文杰 王曦 赵毅

超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性

刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅
PDF
导出引用
导出核心图
  • 随着场效应晶体管(MOSFET)器件尺寸的进一步缩小和器件新结构的引入, 学术界和工业界对器件中热载流子注入(hot carrier injections, HCI)所引起的可靠性问题日益关注. 本文研究了超短沟道长度(L=30–150 nm)绝缘层上硅(silicon on insulator, SOI)场效应晶体管在HCI应力下的电学性能退化机理. 研究结果表明, 在超短沟道情况下, HCI 应力导致的退化随着沟道长度变小而减轻. 通过研究不同栅长器件的恢复特性可以看出, 该现象是由于随着沟道长度的减小, HCI应力下偏压温度不稳定性效应所占比例变大而导致的. 此外, 本文关于SOI器件中HCI应力导致的退化和器件栅长关系的结果与最近报道的鳍式场效晶体管(FinFET)中的结果相反. 因此, 在超短沟道情况下, SOI平面MOSFET器件有可能具有比FinFET器件更好的HCI可靠性.
    • 基金项目: 国家重点基础研究发展规划(批准号: 2011CBA00607)、国家自然科学基金(批准号: 61376097)、浙江省自然科学基金(批准号: LR14F040001)和功能信息材料国家重点实验室开放课题(批准号: SKL201304)资助的课题.
    [1]

    Liu S E, Wang J S, Lu Y R, Huang D S, Huang C F, Hsieh W H, Lee J H, Tsai Y S, Shih J R, Lee Y H, Wu K 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 p4A.4.1

    [2]

    Zhao Y, Wan X G 2006 Acta Phys. Sin. 55 3003 (in Chinese) [赵毅, 万星拱 2006 物理学报 55 3003]

    [3]

    Liang B, Chen J J, Chi Y Q 2014 Chin. Phys. B 23 117304

    [4]

    Chen J J, Chen S M, Liang B, He Y B, Chi Y Q, Deng K F 2011 Chin. Phys. B 20 114220

    [5]

    Ma X H, Cao Y R, Hao Y, Zhang Y 2011 Chin. Phys. B 20 037305

    [6]

    Lei X Y, Liu H X, Zhang K, Zhang Y, Zheng X F, Ma X H, Hao Y 2013 Chin. Phys. B 22 047304

    [7]

    Wu W R, Liu C, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electron Dev. Lett. 35 714

    [8]

    Miura Y, Matukura Y 1966 Jpn. J. Appl. Phys. 5 180

    [9]

    Ning T H, Cook P W, Dennard R H, Osburn C M, Schuster S E, Yu H N 1979 IEEE Trans. Electron Dev. 26 346

    [10]

    Amat E, Kauerauf T, Rodriguez R, Nafria M, Aymerich X, Degraeve R, Groeseneken G 2013 Microelectron. Eng. 103 144

    [11]

    Franco J, Kaczer B, Eneman G, Roussel P, Cho M, Mitard J, Witters L, Hoffmann T Y, Groeseneken G, Crupi F, Grasser T 2011 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 10-14, 2011 p6A.4.1

    [12]

    Ramey S, Hicks J, Liyanage L S, Novak S 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 pXT.2.1

    [13]

    Ramey S, Ashutosh A, Auth C, Clifford J, Hattendorf M, Hicks J, James R, Rahman A, Sharma V, Amour St A, Wiegand C 2013 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 14-18, 2013 p4C.5.1

    [14]

    Takeda E, Suzuki N 1983 IEEE Electron Dev. Lett. 4 111

    [15]

    Duan F, Ioannou D 1996 SOI Conference, 1996 Proceedings, 1996, IEEE International p18

    [16]

    Doyle B S, Mistry K R, Faricelli J 1997 IEEE Electron Dev. Lett. 18 51

    [17]

    Amat E, Kauerauf T, Degraeve R, Rodriguez R, Nafria M, Aymerich X, Groeseneken G 2009 IEEE Trans. Electron Dev. 9 454

    [18]

    Angot D, Huard V, Federspiel X, Cacho F, Bravaix A 2013 IEEE International Reliability Physics Symposium Anaheim, CA, United States, April 14-18,2013 p5D.2.1

    [19]

    Liao J C, Fang Y K, Hou Y T, Hung C L, Hsu P F, Lin K C, Huang K T, Lee T L, Liang M S 2008 Appl. Phys. Lett. 93 092101

    [20]

    Alam M, Mahapatra S 2005 Microelectron. Reliab. 45 71

  • [1]

    Liu S E, Wang J S, Lu Y R, Huang D S, Huang C F, Hsieh W H, Lee J H, Tsai Y S, Shih J R, Lee Y H, Wu K 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 p4A.4.1

    [2]

    Zhao Y, Wan X G 2006 Acta Phys. Sin. 55 3003 (in Chinese) [赵毅, 万星拱 2006 物理学报 55 3003]

    [3]

    Liang B, Chen J J, Chi Y Q 2014 Chin. Phys. B 23 117304

    [4]

    Chen J J, Chen S M, Liang B, He Y B, Chi Y Q, Deng K F 2011 Chin. Phys. B 20 114220

    [5]

    Ma X H, Cao Y R, Hao Y, Zhang Y 2011 Chin. Phys. B 20 037305

    [6]

    Lei X Y, Liu H X, Zhang K, Zhang Y, Zheng X F, Ma X H, Hao Y 2013 Chin. Phys. B 22 047304

    [7]

    Wu W R, Liu C, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electron Dev. Lett. 35 714

    [8]

    Miura Y, Matukura Y 1966 Jpn. J. Appl. Phys. 5 180

    [9]

    Ning T H, Cook P W, Dennard R H, Osburn C M, Schuster S E, Yu H N 1979 IEEE Trans. Electron Dev. 26 346

    [10]

    Amat E, Kauerauf T, Rodriguez R, Nafria M, Aymerich X, Degraeve R, Groeseneken G 2013 Microelectron. Eng. 103 144

    [11]

    Franco J, Kaczer B, Eneman G, Roussel P, Cho M, Mitard J, Witters L, Hoffmann T Y, Groeseneken G, Crupi F, Grasser T 2011 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 10-14, 2011 p6A.4.1

    [12]

    Ramey S, Hicks J, Liyanage L S, Novak S 2014 IEEE International Reliability Physics Symposium Waikoloa, HI, United States, June 1-5, 2014 pXT.2.1

    [13]

    Ramey S, Ashutosh A, Auth C, Clifford J, Hattendorf M, Hicks J, James R, Rahman A, Sharma V, Amour St A, Wiegand C 2013 IEEE International Reliability Physics Symposium Monterey, CA, United States, April 14-18, 2013 p4C.5.1

    [14]

    Takeda E, Suzuki N 1983 IEEE Electron Dev. Lett. 4 111

    [15]

    Duan F, Ioannou D 1996 SOI Conference, 1996 Proceedings, 1996, IEEE International p18

    [16]

    Doyle B S, Mistry K R, Faricelli J 1997 IEEE Electron Dev. Lett. 18 51

    [17]

    Amat E, Kauerauf T, Degraeve R, Rodriguez R, Nafria M, Aymerich X, Groeseneken G 2009 IEEE Trans. Electron Dev. 9 454

    [18]

    Angot D, Huard V, Federspiel X, Cacho F, Bravaix A 2013 IEEE International Reliability Physics Symposium Anaheim, CA, United States, April 14-18,2013 p5D.2.1

    [19]

    Liao J C, Fang Y K, Hou Y T, Hung C L, Hsu P F, Lin K C, Huang K T, Lee T L, Liang M S 2008 Appl. Phys. Lett. 93 092101

    [20]

    Alam M, Mahapatra S 2005 Microelectron. Reliab. 45 71

  • [1] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200497
    [2] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [3] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性. 物理学报, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [4] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [5] 孟宪成, 范超. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191960
    [6] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性. 物理学报, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [7] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [8] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [9] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [10] 刘红侠, 王志, 卓青青, 王倩琼. 总剂量辐照下沟道长度对部分耗尽绝缘体上硅p型场效应晶体管电特性的影响. 物理学报, 2014, 63(1): 016102. doi: 10.7498/aps.63.016102
    [11] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [12] 赵毅, 李骏康, 郑泽杰. 硅/锗基场效应晶体管沟道中载流子散射机制研究进展. 物理学报, 2019, 68(16): 167301. doi: 10.7498/aps.68.20191146
    [13] 骆扬, 王亚楠. 物理型硬件木马失效机理及检测方法. 物理学报, 2016, 65(11): 110602. doi: 10.7498/aps.65.110602
    [14] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [15] 刘红侠, 尹湘坤, 刘冰洁, 郝跃. 应变绝缘层上硅锗p型金属氧化物场效应晶体管的阈值电压解析模型. 物理学报, 2010, 59(12): 8877-8882. doi: 10.7498/aps.59.8877
    [16] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [17] 魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇. 高质量单层二硫化钼薄膜的研究进展. 物理学报, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [18] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变硅N沟道金属氧化物半导体场效应晶体管电容特性模型. 物理学报, 2015, 64(6): 067305. doi: 10.7498/aps.64.067305
    [19] 石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维. 基于栅绝缘层表面修饰的有机场效应晶体管迁移率的研究进展 . 物理学报, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [20] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
  • 引用本文:
    Citation:
计量
  • 文章访问数:  819
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 修回日期:  2015-04-23
  • 刊出日期:  2015-08-20

超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性

  • 1. 南京大学电子科学与工程学院, 南京 210093;
  • 2. 浙江大学信息与电子工程学系, 杭州 310027;
  • 3. 中国科学院上海信息技术与微系统研究所, 上海 200050;
  • 4. 浙江大学硅材料国家重点实验室, 杭州 310027
    基金项目: 

    国家重点基础研究发展规划(批准号: 2011CBA00607)、国家自然科学基金(批准号: 61376097)、浙江省自然科学基金(批准号: LR14F040001)和功能信息材料国家重点实验室开放课题(批准号: SKL201304)资助的课题.

摘要: 随着场效应晶体管(MOSFET)器件尺寸的进一步缩小和器件新结构的引入, 学术界和工业界对器件中热载流子注入(hot carrier injections, HCI)所引起的可靠性问题日益关注. 本文研究了超短沟道长度(L=30–150 nm)绝缘层上硅(silicon on insulator, SOI)场效应晶体管在HCI应力下的电学性能退化机理. 研究结果表明, 在超短沟道情况下, HCI 应力导致的退化随着沟道长度变小而减轻. 通过研究不同栅长器件的恢复特性可以看出, 该现象是由于随着沟道长度的减小, HCI应力下偏压温度不稳定性效应所占比例变大而导致的. 此外, 本文关于SOI器件中HCI应力导致的退化和器件栅长关系的结果与最近报道的鳍式场效晶体管(FinFET)中的结果相反. 因此, 在超短沟道情况下, SOI平面MOSFET器件有可能具有比FinFET器件更好的HCI可靠性.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回