搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米棒复合体的消光特性

黄运欢 李璞

金纳米棒复合体的消光特性

黄运欢, 李璞
PDF
导出引用
导出核心图
  • 金属纳米颗粒局域表面等离激元共振时能够产生消光和近场增强效应已经成为国内外研究的热点. 应用时域有限差分法对L形纳米棒与普通纳米棒构成的金纳米棒复合体的消光光谱及其近场增强和电流矢量密度分布进行了研究. 计算结果表明, 普通纳米棒和L形纳米棒二聚体的光谱响应与纳米棒间的间距有关, 而金纳米棒复合体的消光光谱可通过调整L形纳米棒与普通纳米棒间的间距、L形纳米棒的臂长度以及普通纳米棒的长度进行调谐. 此外金纳米棒复合体可以分解成L形纳米棒二聚体和普通纳米棒二聚体两个部分, 通过分别改变L形纳米棒的臂长和普通纳米棒的长度, 对比L形纳米棒二聚体和普通纳米棒二聚体间的共振峰位置变化, 可以更直观地了解金纳米棒复合体消光光谱线型的变化. 这些结果可用于指导金纳米棒复合体纳米光子器件的设计, 以满足其在表面增强拉曼散射和生物传感等方面应用.
    • 基金项目: 国家自然科学基金(批准号: 61205142, 51404165)资助的课题.
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2002 J. Phys. Chem. B 34 668

    [3]

    Ding P, Wang J Q, He J N, Fan C Z, Cai G W, Liang E J 2013 Chin. Phys.B 22 127802

    [4]

    Liu S D, Cheng M T 2010 J. Appl. Phys. 108 034313

    [5]

    Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M, Gao H J 2011 Chin. Phys. B 20 076103

    [6]

    Shopa M, Kolwas K, Derkachova A, Derkachov G 2010 Opto-Electron. Rev. 18 421

    [7]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 Appl. Phys. Lett. 100 203119

    [8]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260

    [9]

    Liu S D, Zhang M J, Wang W J, Wang Y C 2013 Appl. Phys. Lett. 102 133105

    [10]

    Kessentini S, Barchiesi D, D'Andrea C, Toma A, Guillot N, Di Fabrizio E, Fazio B, Marago O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209

    [11]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [12]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [13]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363

    [14]

    He M D, Ma W G, Wang X J 2013 Chin. Phys. B 22 114201

    [15]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [16]

    Jiang W, Kim B Y S, Rutka J T, Chan W C W 2008 Nat Nanotechnol. 3 145

    [17]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [18]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [19]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [20]

    Yuan J, Kan Q, Geng Z X, Xie Y Y, Wang C X, Chen H D 2014 Chin. Phys. B 23 084201

    [21]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [22]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2015 Chin. Phys. Lett. 32 018701

    [23]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 J. Phys. Chem. C 115 24469

    [24]

    Zhou Q, He Y, Abell J, Zhang Z, Zhao Y 2011 J. Phys. Chem. C 115 14131

    [25]

    Wang J Q, Fan C Z, He J N, Ding P, Liang E J, Xue Q Z 2013 Opt. Express 21 2236

    [26]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042

    [27]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [28]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [29]

    Wang M, Cao M, Guo Z R, Gu N 2013 J. Phys. Chem. C 117 11713

    [30]

    Canfield B K, Kujala S, Jefimovs K, Turunen J, Kauranen M 2004 Opt. Express 12 5418

    [31]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 Appl. Phys. Lett. 86 183109

    [32]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 J. Opt. A: Pure Appl. Opt. 7 110

    [33]

    Sung J, Hicks E M, van Duyne R P, Spears K G 2007 J. Phys. Chem. C 111 10368

    [34]

    Panaro S, Toma A, Zaccaria R P, Chirumamilla M, Saeed A, Razzari L, Das G, Liberale C, de Angelis F, Di Fabrizio E 2013 Microelectron. Eng. 111 91

    [35]

    Husu H, Makitalo J, Laukkanen J, Kuittinen M, Kauranen M 2010 Opt. Express 18 16601

    [36]

    Yang J, Zhang J S 2013 Opt. Express 21 7934

    [37]

    Yang J, Zhang J S 2011 Plasmonics 6 251

    [38]

    Liu J Q, Chen J, Wang D Y, Zhou Y X, Chen Z H, Wang L L 2013 Chin. Phys. Lett. 30 097801

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 31 3964

    [41]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2002 J. Phys. Chem. B 34 668

    [3]

    Ding P, Wang J Q, He J N, Fan C Z, Cai G W, Liang E J 2013 Chin. Phys.B 22 127802

    [4]

    Liu S D, Cheng M T 2010 J. Appl. Phys. 108 034313

    [5]

    Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M, Gao H J 2011 Chin. Phys. B 20 076103

    [6]

    Shopa M, Kolwas K, Derkachova A, Derkachov G 2010 Opto-Electron. Rev. 18 421

    [7]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 Appl. Phys. Lett. 100 203119

    [8]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260

    [9]

    Liu S D, Zhang M J, Wang W J, Wang Y C 2013 Appl. Phys. Lett. 102 133105

    [10]

    Kessentini S, Barchiesi D, D'Andrea C, Toma A, Guillot N, Di Fabrizio E, Fazio B, Marago O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209

    [11]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [12]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [13]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363

    [14]

    He M D, Ma W G, Wang X J 2013 Chin. Phys. B 22 114201

    [15]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [16]

    Jiang W, Kim B Y S, Rutka J T, Chan W C W 2008 Nat Nanotechnol. 3 145

    [17]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [18]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [19]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [20]

    Yuan J, Kan Q, Geng Z X, Xie Y Y, Wang C X, Chen H D 2014 Chin. Phys. B 23 084201

    [21]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [22]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2015 Chin. Phys. Lett. 32 018701

    [23]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 J. Phys. Chem. C 115 24469

    [24]

    Zhou Q, He Y, Abell J, Zhang Z, Zhao Y 2011 J. Phys. Chem. C 115 14131

    [25]

    Wang J Q, Fan C Z, He J N, Ding P, Liang E J, Xue Q Z 2013 Opt. Express 21 2236

    [26]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042

    [27]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [28]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [29]

    Wang M, Cao M, Guo Z R, Gu N 2013 J. Phys. Chem. C 117 11713

    [30]

    Canfield B K, Kujala S, Jefimovs K, Turunen J, Kauranen M 2004 Opt. Express 12 5418

    [31]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 Appl. Phys. Lett. 86 183109

    [32]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 J. Opt. A: Pure Appl. Opt. 7 110

    [33]

    Sung J, Hicks E M, van Duyne R P, Spears K G 2007 J. Phys. Chem. C 111 10368

    [34]

    Panaro S, Toma A, Zaccaria R P, Chirumamilla M, Saeed A, Razzari L, Das G, Liberale C, de Angelis F, Di Fabrizio E 2013 Microelectron. Eng. 111 91

    [35]

    Husu H, Makitalo J, Laukkanen J, Kuittinen M, Kauranen M 2010 Opt. Express 18 16601

    [36]

    Yang J, Zhang J S 2013 Opt. Express 21 7934

    [37]

    Yang J, Zhang J S 2011 Plasmonics 6 251

    [38]

    Liu J Q, Chen J, Wang D Y, Zhou Y X, Chen Z H, Wang L L 2013 Chin. Phys. Lett. 30 097801

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 31 3964

    [41]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1492
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-24
  • 修回日期:  2015-06-21
  • 刊出日期:  2015-10-05

金纳米棒复合体的消光特性

  • 1. 新型传感器与智能控制教育部重点实验室, 太原 030024;
  • 2. 太原理工大学物理与光电工程学院, 太原 030024
    基金项目: 

    国家自然科学基金(批准号: 61205142, 51404165)资助的课题.

摘要: 金属纳米颗粒局域表面等离激元共振时能够产生消光和近场增强效应已经成为国内外研究的热点. 应用时域有限差分法对L形纳米棒与普通纳米棒构成的金纳米棒复合体的消光光谱及其近场增强和电流矢量密度分布进行了研究. 计算结果表明, 普通纳米棒和L形纳米棒二聚体的光谱响应与纳米棒间的间距有关, 而金纳米棒复合体的消光光谱可通过调整L形纳米棒与普通纳米棒间的间距、L形纳米棒的臂长度以及普通纳米棒的长度进行调谐. 此外金纳米棒复合体可以分解成L形纳米棒二聚体和普通纳米棒二聚体两个部分, 通过分别改变L形纳米棒的臂长和普通纳米棒的长度, 对比L形纳米棒二聚体和普通纳米棒二聚体间的共振峰位置变化, 可以更直观地了解金纳米棒复合体消光光谱线型的变化. 这些结果可用于指导金纳米棒复合体纳米光子器件的设计, 以满足其在表面增强拉曼散射和生物传感等方面应用.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回