搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米颗粒光散射提高InAs单量子点荧光提取效率

苏丹 窦秀明 丁琨 王海艳 倪海桥 牛智川 孙宝权

金纳米颗粒光散射提高InAs单量子点荧光提取效率

苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权
PDF
导出引用
导出核心图
  • 采用光学方法确定InAs/GaAs单量子点在样品外延面上的位置坐标, 利用AlAs牺牲层把含有量子点的GaAs层剥离并放置在含有金纳米颗粒或平整金膜上, 研究量子点周围环境不同对量子点自发辐射寿命及发光提取效率的影响. 实验结果显示, 剥离前后量子点发光寿命的变化小于13%, 含有金纳米颗粒的量子点发光强度是剥离前的7倍, 含有金属薄膜的量子点发光强度是剥离前的2倍. 分析表明在金纳米颗粒膜上的量子点荧光强度的增加主要来自于金纳米颗粒对量子点荧光的散射效应, 从而提高量子点发光的提取效率.
      通信作者: 孙宝权, bqsun@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11204297)资助的课题.
    [1]

    Chang J, Kuga Y, Mora-Seró I, Toyoda T, Ogomi Y, Hayase S, Bisquert J, Shen Q 2015 Nanoscale 7 5446

    [2]

    Luther J M, Gao J B, Lloyd M T, Semonin O E, Beard M C, Nozik A J 2010 Adv. Mater. 22 3704

    [3]

    Wang H, Xu L, Zhang R, Ge Z, Zhang W, Xu J, Ma Z, Chen K 2015 Nanoscale Research Letters 10 128

    [4]

    Gao X Q, Zhuo N Z, Wang H B, Cui Y P, Zhang J Y 2015 Acta Phys. Sin. 64 137801 (in Chinese) [高小钦, 卓宁泽, 王海波, 崔一平, 张家雨 2015 物理学报 64 137801]

    [5]

    Matsumoto K, Zhang X X, Kishikawa J, Shimomura K 2015 Jpn. J. Appl. Phys. 54 030208

    [6]

    Shields A J 2007 Nat. Photon. 1 215

    [7]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [8]

    Nowak A K, Portalupi S L, Giesz V, Gazzano O, DalSavio C, Braun P F, Karrai K, Arnold C, Lanco L, Sagnes I, Lemaître A, Senellart P 2014 Nat. Commun.5 3240

    [9]

    Badolato A, Hennessy K, Atatre M, Dreiser J, Hu E, Petroff P M, Imamoğlu A 2005 Science 308 1158

    [10]

    Santori C, Fattal D, Vučković J, Solomon G S, Yamamoto Y 2002 Nature 419 594

    [11]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835

    [12]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802

    [13]

    Shahin S, Gangopadhyay P, Norwood R A 2012 Appl. Phys. Lett. 101 053109

    [14]

    Wang D H, Kim D Y, Choi K W, Seo J H, Im S H, Park J H, Park O O, Heeger A J 2011 Angew. Chem. 123 5633

    [15]

    Fang P P, Lu X H, Liu H, Tong Y X 2015 Trends in Analytical Chemistry 66 103

    [16]

    Pfeiffer M, Lindfors K, Atkinson P, Rastelli A, Schmidt O G, Giessen H, Lippitz M 2012 Phys. Status Solidi B 249 678

    [17]

    Liang H Y, Li Z P, Wang W Z, Wu Y S, Xu H X 2009 Adv. Mater. 21 4614

    [18]

    Schaffernak G, Gruber C, Krenn J R, Krug M K, Gašpari M, Belitsch M, Hohenau A 2015 Proc. of SPIE 9450 94501S-1

    [19]

    Wang H Y, Dou X M, Yang S, Su D, Jiang D S, Ni H Q, Niu Z C, Sun B Q 2014 J. Appl. Phys. 115 123104

  • [1]

    Chang J, Kuga Y, Mora-Seró I, Toyoda T, Ogomi Y, Hayase S, Bisquert J, Shen Q 2015 Nanoscale 7 5446

    [2]

    Luther J M, Gao J B, Lloyd M T, Semonin O E, Beard M C, Nozik A J 2010 Adv. Mater. 22 3704

    [3]

    Wang H, Xu L, Zhang R, Ge Z, Zhang W, Xu J, Ma Z, Chen K 2015 Nanoscale Research Letters 10 128

    [4]

    Gao X Q, Zhuo N Z, Wang H B, Cui Y P, Zhang J Y 2015 Acta Phys. Sin. 64 137801 (in Chinese) [高小钦, 卓宁泽, 王海波, 崔一平, 张家雨 2015 物理学报 64 137801]

    [5]

    Matsumoto K, Zhang X X, Kishikawa J, Shimomura K 2015 Jpn. J. Appl. Phys. 54 030208

    [6]

    Shields A J 2007 Nat. Photon. 1 215

    [7]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [8]

    Nowak A K, Portalupi S L, Giesz V, Gazzano O, DalSavio C, Braun P F, Karrai K, Arnold C, Lanco L, Sagnes I, Lemaître A, Senellart P 2014 Nat. Commun.5 3240

    [9]

    Badolato A, Hennessy K, Atatre M, Dreiser J, Hu E, Petroff P M, Imamoğlu A 2005 Science 308 1158

    [10]

    Santori C, Fattal D, Vučković J, Solomon G S, Yamamoto Y 2002 Nature 419 594

    [11]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835

    [12]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802

    [13]

    Shahin S, Gangopadhyay P, Norwood R A 2012 Appl. Phys. Lett. 101 053109

    [14]

    Wang D H, Kim D Y, Choi K W, Seo J H, Im S H, Park J H, Park O O, Heeger A J 2011 Angew. Chem. 123 5633

    [15]

    Fang P P, Lu X H, Liu H, Tong Y X 2015 Trends in Analytical Chemistry 66 103

    [16]

    Pfeiffer M, Lindfors K, Atkinson P, Rastelli A, Schmidt O G, Giessen H, Lippitz M 2012 Phys. Status Solidi B 249 678

    [17]

    Liang H Y, Li Z P, Wang W Z, Wu Y S, Xu H X 2009 Adv. Mater. 21 4614

    [18]

    Schaffernak G, Gruber C, Krenn J R, Krug M K, Gašpari M, Belitsch M, Hohenau A 2015 Proc. of SPIE 9450 94501S-1

    [19]

    Wang H Y, Dou X M, Yang S, Su D, Jiang D S, Ni H Q, Niu Z C, Sun B Q 2014 J. Appl. Phys. 115 123104

  • [1] 曾惠丹, 曲士良, 姜雄伟, 邱建荣, 朱从善, 干福熹. 飞秒激光作用下金掺杂硅酸盐玻璃的光致晶化研究. 物理学报, 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
    [2] 张金碧, 丁蕾, 王颖萍, 郑海洋, 方黎. 利用近前向散射图样识别单粒子形状的理论研究. 物理学报, 2015, 64(5): 054202. doi: 10.7498/aps.64.054202
    [3] 张启兴, 李耀东, 邓小玖, 张永明. 火灾烟雾颗粒532 nm光散射矩阵实验研究. 物理学报, 2011, 60(8): 084216. doi: 10.7498/aps.60.084216
    [4] 常秀英, 窦秀明, 孙宝权, 熊永华, 倪海桥, 牛智川. 电场调谐InAs单量子点的发光光谱. 物理学报, 2010, 59(6): 4279-4282. doi: 10.7498/aps.59.4279
    [5] 丁迎春, 吕志伟, 何伟明. 种子光与抽运光能量比对布里渊放大的影响. 物理学报, 2002, 51(12): 2767-2771. doi: 10.7498/aps.51.2767
    [6] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权. 等离子体增强InAs单量子点荧光辐射的研究. 物理学报, 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [7] 申钰田, 孟胜. 光解水的原子尺度机理和量子动力学. 物理学报, 2019, 68(1): 018202. doi: 10.7498/aps.68.20181312
    [8] 姜玲, 张昌能, 丁勇, 莫立娥, 黄阳, 胡林华, 戴松元. 纳米TiO2颗粒/亚微米球多层结构薄膜内电荷传输性能研究. 物理学报, 2015, 64(1): 017301. doi: 10.7498/aps.64.017301
    [9] 王 凯, 杨 光, 龙 华, 李玉华, 戴能利, 陆培祥. 金纳米颗粒的有序制备及其光学特性. 物理学报, 2008, 57(6): 3862-3867. doi: 10.7498/aps.57.3862
    [10] 李 俊, 张凯旺, 孟利军, 刘文亮, 钟建新. 碳纳米管表面金纳米颗粒的形成与结构转变. 物理学报, 2008, 57(1): 382-386. doi: 10.7498/aps.57.382
    [11] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究. 物理学报, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [12] 韩一平, 孙贤明. 冰水混合云对可见光的吸收和散射特性. 物理学报, 2006, 55(2): 682-687. doi: 10.7498/aps.55.682
    [13] 孙贤明, 申晋, 魏佩瑜. 含有密集随机分布内核的椭球粒子光散射特性研究. 物理学报, 2009, 58(9): 6222-6226. doi: 10.7498/aps.58.6222
    [14] 韩一平, 刘德芳, 吴 鹏. 大粒子对高斯波束散射的数值模拟. 物理学报, 2005, 54(6): 2676-2679. doi: 10.7498/aps.54.2676
    [15] 孙贤明, 王海华, 申晋, 王淑君. 随机取向双层椭球粒子偏振散射特性研究. 物理学报, 2011, 60(11): 114216. doi: 10.7498/aps.60.114216
    [16] 亓东平, 刘德丽, 滕树云, 张宁玉, 程传福. 随机散射屏的原子力显微镜形貌分析及其光散射特性. 物理学报, 2000, 49(7): 1260-1266. doi: 10.7498/aps.49.1260
    [17] 张燕, 赵曰峰, 赵丽娜, 郑立仁, 高垣梅. 光折变晶体LiNbO3:Fe中的特殊散射现象. 物理学报, 2017, 66(8): 084206. doi: 10.7498/aps.66.084206
    [18] 李 智, 张家森, 杨 景, 龚旗煌. 飞秒时间分辨近场光学系统实现及其应用. 物理学报, 2007, 56(6): 3630-3635. doi: 10.7498/aps.56.3630
    [19] 李艳辉, 吴振森, 宫彦军, 张耿, 王明军. 目标激光脉冲一维距离成像研究. 物理学报, 2010, 59(10): 6988-6993. doi: 10.7498/aps.59.6988
    [20] 宫彦军, 吴振森. 转动圆柱和圆锥的激光距离多普勒像分析模型. 物理学报, 2009, 58(9): 6227-6235. doi: 10.7498/aps.58.6227
  • 引用本文:
    Citation:
计量
  • 文章访问数:  603
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-31
  • 修回日期:  2015-07-15
  • 刊出日期:  2015-12-05

金纳米颗粒光散射提高InAs单量子点荧光提取效率

  • 1. 中国科学院半导体研究所, 半导体超晶格国家重点实验室, 北京 100083
  • 通信作者: 孙宝权, bqsun@semi.ac.cn
    基金项目: 

    国家自然科学基金(批准号: 11204297)资助的课题.

摘要: 采用光学方法确定InAs/GaAs单量子点在样品外延面上的位置坐标, 利用AlAs牺牲层把含有量子点的GaAs层剥离并放置在含有金纳米颗粒或平整金膜上, 研究量子点周围环境不同对量子点自发辐射寿命及发光提取效率的影响. 实验结果显示, 剥离前后量子点发光寿命的变化小于13%, 含有金纳米颗粒的量子点发光强度是剥离前的7倍, 含有金属薄膜的量子点发光强度是剥离前的2倍. 分析表明在金纳米颗粒膜上的量子点荧光强度的增加主要来自于金纳米颗粒对量子点荧光的散射效应, 从而提高量子点发光的提取效率.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回