搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯涂覆空心光纤电光调制特性的研究

毕卫红 王圆圆 付广伟 王晓愚 李彩丽

基于石墨烯涂覆空心光纤电光调制特性的研究

毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽
PDF
导出引用
导出核心图
  • 设计了一种新型的石墨烯-空心光纤可调谐结构, 将石墨烯涂覆在空心光纤的空气孔内表面上, 利用有限元法研究了该结构的电光调制特性. 通过改变石墨烯的化学势可以调控光纤的相位和开关特性, 还可以调谐光纤损耗峰与次峰的位置、强度和宽度. 然而, 空气孔半径和石墨烯层数不会改变开关点和损耗峰与次峰的位置, 只会改变损耗差和损耗峰的强度和宽度, 而且由N 层石墨烯引起的损耗差是单层的N倍. 这是因为石墨烯的介电常数决定了光纤的有效折射率和损耗, 通过改变石墨烯的化学势可以改变石墨烯的介电常数, 而石墨烯的层数和空气孔半径却不会改变石墨烯的介电常数, 但是改变了石墨烯和光的作用强度. 经过参数优化之后, 我们提出一种基于五层石墨烯涂覆空心光纤的电吸收型调制器, 工作在11801760 nm波段, 具有小尺寸(5 mm125 m)、宽光带宽(580 nm)、高消光比(16 dB)、高调制带宽(64 MHz) 和低插入损耗(1.23 dB) 特性. 研究结果对基于石墨烯的可调谐光纤光子器件的设计和应用提供了理论参考.
      通信作者: 毕卫红, whbi@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61575170, 61475133)资助的课题.
    [1]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [2]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [3]

    Wang L M, Monte T D 2008 Opt. Lett. 33 1078

    [4]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [5]

    Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214

    [6]

    Liu C, Pei L, Wu L Y, Wang Y Q, Weng S J, Yu S W 2015 Acta Phys. Sin. 64 174207 (in Chinese) [刘超, 裴丽, 吴良英, 王一群, 翁思俊, 余少伟 2015 物理学报 64 174207]

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Vakil A, Engheta N 2011 Science 332 1291

    [10]

    Obraztsov P A, Rybin M G, Tyurnina A V, Garnov S V, Obraztsova E D, Obraztsov A N, Svirko Y P 2011 Nano Lett. 11 1540

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Lu Z L, Zhao W S 2012 J. Opt. Soc. Am. B 29 1490

    [13]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [14]

    Hao R, Du W, Chen H S, Jin X F, Yang L Z, Li E P 2013 Appl. Phys. Lett. 103 061116

    [15]

    Sorianello V, Midrio M, Romagnoli M 2015 Opt. Express 23 6478

    [16]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [17]

    Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411

    [18]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [19]

    Lee E J, Choi S Y, Jeong H, Park N H, Yim W, Kim M H, Park J K, Son S, Bae S, Kim S J, Lee K, Ahn Y H, Ahn K J, Hong B H, Park J Y, Rotermund F, Yeom D I 2015 Nat. Commun. 6 6851

    [20]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [21]

    Capmany J, Domenech D, Muoz P 2014 Opt. Express 22 5283

    [22]

    Lee S, Park J, Jeong Y, Jung H, Oh K 2009 J. Lightwave Technol. 27 4919

    [23]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nat. Photon. 4 518

  • [1]

    Malmstrm M, Margulis W, Tarasenko O, Pasiskevicius V, Laurell F 2012 Opt. Express 20 2905

    [2]

    Wang J L, Du M Q, Zhang L L, Liu Y J, Sun W M 2015 Acta Phys. Sin. 64 120702 (in Chinese) [王家璐, 杜木清, 张伶俐, 刘永军, 孙伟民 2015 物理学报 64 120702]

    [3]

    Wang L M, Monte T D 2008 Opt. Lett. 33 1078

    [4]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [5]

    Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214

    [6]

    Liu C, Pei L, Wu L Y, Wang Y Q, Weng S J, Yu S W 2015 Acta Phys. Sin. 64 174207 (in Chinese) [刘超, 裴丽, 吴良英, 王一群, 翁思俊, 余少伟 2015 物理学报 64 174207]

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Vakil A, Engheta N 2011 Science 332 1291

    [10]

    Obraztsov P A, Rybin M G, Tyurnina A V, Garnov S V, Obraztsova E D, Obraztsov A N, Svirko Y P 2011 Nano Lett. 11 1540

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Lu Z L, Zhao W S 2012 J. Opt. Soc. Am. B 29 1490

    [13]

    Zhou F, Hao R, Jin X F, Zhang X M, Li E P 2014 IEEE Photon. Technol. Lett. 26 1867

    [14]

    Hao R, Du W, Chen H S, Jin X F, Yang L Z, Li E P 2013 Appl. Phys. Lett. 103 061116

    [15]

    Sorianello V, Midrio M, Romagnoli M 2015 Opt. Express 23 6478

    [16]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [17]

    Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411

    [18]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [19]

    Lee E J, Choi S Y, Jeong H, Park N H, Yim W, Kim M H, Park J K, Son S, Bae S, Kim S J, Lee K, Ahn Y H, Ahn K J, Hong B H, Park J Y, Rotermund F, Yeom D I 2015 Nat. Commun. 6 6851

    [20]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [21]

    Capmany J, Domenech D, Muoz P 2014 Opt. Express 22 5283

    [22]

    Lee S, Park J, Jeong Y, Jung H, Oh K 2009 J. Lightwave Technol. 27 4919

    [23]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nat. Photon. 4 518

  • [1] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [2] 王晓愚, 毕卫红. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200750
    [3] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [4] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [5] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [6] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [7] 杨建军, 朱晓农, 曹士英, 柴 路, 王清月, 张志刚. 利用空心光纤探测飞秒脉冲在氩气中成丝过程中的光谱演变. 物理学报, 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
    [8] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [11] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [12] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [13] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [14] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [15] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [18] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [19] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨. 物理学报, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [20] 冯秋燕, 姚佰承, 周金浩, 夏汉定, 范孟秋, 张黎, 吴宇, 饶云江. 基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究. 物理学报, 2015, 64(18): 184214. doi: 10.7498/aps.64.184214
  • 引用本文:
    Citation:
计量
  • 文章访问数:  967
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-13
  • 修回日期:  2015-12-04
  • 刊出日期:  2016-02-05

基于石墨烯涂覆空心光纤电光调制特性的研究

  • 1. 燕山大学信息科学与工程学院, 河北省特种光纤与光纤传感重点实验室, 秦皇岛 066004
  • 通信作者: 毕卫红, whbi@ysu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61575170, 61475133)资助的课题.

摘要: 设计了一种新型的石墨烯-空心光纤可调谐结构, 将石墨烯涂覆在空心光纤的空气孔内表面上, 利用有限元法研究了该结构的电光调制特性. 通过改变石墨烯的化学势可以调控光纤的相位和开关特性, 还可以调谐光纤损耗峰与次峰的位置、强度和宽度. 然而, 空气孔半径和石墨烯层数不会改变开关点和损耗峰与次峰的位置, 只会改变损耗差和损耗峰的强度和宽度, 而且由N 层石墨烯引起的损耗差是单层的N倍. 这是因为石墨烯的介电常数决定了光纤的有效折射率和损耗, 通过改变石墨烯的化学势可以改变石墨烯的介电常数, 而石墨烯的层数和空气孔半径却不会改变石墨烯的介电常数, 但是改变了石墨烯和光的作用强度. 经过参数优化之后, 我们提出一种基于五层石墨烯涂覆空心光纤的电吸收型调制器, 工作在11801760 nm波段, 具有小尺寸(5 mm125 m)、宽光带宽(580 nm)、高消光比(16 dB)、高调制带宽(64 MHz) 和低插入损耗(1.23 dB) 特性. 研究结果对基于石墨烯的可调谐光纤光子器件的设计和应用提供了理论参考.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回