搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交相Fe2(MoO4)3的制备与表征及其负膨胀行为的第一性原理研究

柴丰涛 岳继礼 邱吴劼 郭海波 陈丽江 施思齐

正交相Fe2(MoO4)3的制备与表征及其负膨胀行为的第一性原理研究

柴丰涛, 岳继礼, 邱吴劼, 郭海波, 陈丽江, 施思齐
PDF
导出引用
导出核心图
  • 采用水热合成法制备出Fe2(MoO4)3样品, 并用高温X-射线衍射、热重和差示扫描量热同步热分析仪对其进行表征, 发现样品在510 ℃附近发生低温单斜相和高温正交相之间的可逆相变, 且正交相表现出负膨胀特征. 采用第一性原理计算了正交相Fe2(MoO4)3 的原子、电子结构以及声子谱、声子态密度, 并和可获得的实验结果进行了系统的比较. 结果显示正交相Fe2(MoO4)3中MoO4四面体较之FeO6八面体具有更强的刚性. 发现最低频的光学支处具有最负的格林乃森(Grneisen)系数, MoO4四面体和FeO6 八面体相连的桥氧原子的横向振动、FeO6八面体柔性扭曲转动以及MoO4四面体的刚性翻转共同导致了Fe2(MoO4)3负膨胀现象的发生.
      通信作者: 施思齐, sqshi@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51372228)和上海浦江人才计划 (批准号: 14PJ1403900)资助的课题.
    [1]

    Guillaume C E 1905 Nature 71 134

    [2]

    Tran K D, Groshens T J, Nelson J G 2001 Mater. Sci. Eng. A 303 234

    [3]

    Sleight A 2003 Nature 425 674

    [4]

    Takenaka K 2012 Sci. Technol. Adv. Mater. 13 013001

    [5]

    Chen J, Xing X R, Liu G R, Li J H, Liu Y T 2006 Appl. Phys. Lett. 89 101914

    [6]

    Patwe S J, Achary S N, Mathews M D, Tyagi A K 2005 J. Alloys Compd. 390 100

    [7]

    Chen J, Xing X R, Yu R B, Liu G R, Wu L, Chen X L 2004 J. Mater. Res. 19 3614

    [8]

    Chen J, Xing X R, Deng J X, Liu G R 2004 J. Alloys Compd. 372 259

    [9]

    Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 物理学报 59 3350]

    [10]

    Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90

    [11]

    Goodwin A L, Kepert C J 2005 Phys. Rev. B 71 140301

    [12]

    Woodcock D A, Lightfoot P, Villaescusa L A, Daz-Cabaas M J, Camblor M A, Engberg D 1999 Chem. Mater. 11 2508

    [13]

    Mounet N, Marzari N 2005 Phys. Rev. B 71 205214

    [14]

    Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912

    [15]

    Evans J S O, Mary T A, Sleight A W 1997 J. Solid State Chem. 133 580

    [16]

    Welche P R L, Heine V, Dove M T 1998 Phys. Chem. Miner. 26 63

    [17]

    Chen J, Hu L, Deng J X, Xing X R 2015 Chem. Soc. Rev. 44 3522

    [18]

    Hummel F A 1951 J. Am. Ceram. Soc. 34 235

    [19]

    Agrawal D K, Roy R, McKinstry H A 1987 Mater. Res. Bull. 22 83

    [20]

    Wang F, Xie, Y, Chen J, Fu H, Xing X 2013 Appl. Phys. Lett. 103 221901

    [21]

    21 Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Compd. 339 207

    [22]

    Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148

    [23]

    Wang Z P, Song W B, ZHAO Y, Jiang Y J, Liang E J 2011 The Journal of Light Scattering 23 250

    [24]

    Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T, Chen D F 2012 Chin. Phys. B 21 116102

    [25]

    Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501

    [26]

    Song W B, Yuan, B H, Liu X H, Li Z Y, Wang J Q, Liang E J 2014 J. Mater. Res. 29 849

    [27]

    Yue J L, Zhou Y N, Shi S Q, Shadike Z L P Y, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810

    [28]

    Gava V, Martinotto A L, Perottoni C A 2012 Phys. Rev. Lett. 109 195503

    [29]

    Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B 90 045409

    [30]

    Wang L, Wang F, Yuan P F, Sun Q, Liang E J, Jia Y, Guo Z X 2013 Mater. Res. Bull. 48 2724

    [31]

    Ding Y, Yu S H, Liu C, Zang Z A 2007 Chem. Eur. J. 13 746

    [32]

    Harrison W T 1995 Mater. Res. Bull. 30 1325

    [33]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [34]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [36]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467

    [37]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121

    [38]

    Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    [39]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 382

    [40]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [41]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063

    [42]

    Xin X G, Chen X, Zhou J J, Shi S Q 2011 Acta Phys. Sin. 60 028201 (in Chinese) [忻晓桂, 陈香, 周晶晶, 施思齐 2011 物理学报 60 028201]

    [43]

    Fang J X, Lu D 1982 Solid State Physics (Vol. 1) (Shanghai: Shanghai Scientific Technical Publishers) p143 (in Chinese) [方俊鑫, 陆栋 1982 固体物理学(上册) (上海: 上海科学技术出版社) 第143页]

    [44]

    Xu Q, Jia G, Zhang J, Feng Z, Li C 2008 J. Phys. Chem. C 112 9387

    [45]

    Ravindran T R, Arora A K, Chandra S, Valsakumar M C, Shekar N C 2007 Phys. Rev. B 76 054302

    [46]

    Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y 2008 J. Phys. Chem. A 112 12582

    [47]

    Weller M T, Henry P F, Wilson C C 2000 J. Phys. Chem. B 104 12224

  • [1]

    Guillaume C E 1905 Nature 71 134

    [2]

    Tran K D, Groshens T J, Nelson J G 2001 Mater. Sci. Eng. A 303 234

    [3]

    Sleight A 2003 Nature 425 674

    [4]

    Takenaka K 2012 Sci. Technol. Adv. Mater. 13 013001

    [5]

    Chen J, Xing X R, Liu G R, Li J H, Liu Y T 2006 Appl. Phys. Lett. 89 101914

    [6]

    Patwe S J, Achary S N, Mathews M D, Tyagi A K 2005 J. Alloys Compd. 390 100

    [7]

    Chen J, Xing X R, Yu R B, Liu G R, Wu L, Chen X L 2004 J. Mater. Res. 19 3614

    [8]

    Chen J, Xing X R, Deng J X, Liu G R 2004 J. Alloys Compd. 372 259

    [9]

    Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 物理学报 59 3350]

    [10]

    Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90

    [11]

    Goodwin A L, Kepert C J 2005 Phys. Rev. B 71 140301

    [12]

    Woodcock D A, Lightfoot P, Villaescusa L A, Daz-Cabaas M J, Camblor M A, Engberg D 1999 Chem. Mater. 11 2508

    [13]

    Mounet N, Marzari N 2005 Phys. Rev. B 71 205214

    [14]

    Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912

    [15]

    Evans J S O, Mary T A, Sleight A W 1997 J. Solid State Chem. 133 580

    [16]

    Welche P R L, Heine V, Dove M T 1998 Phys. Chem. Miner. 26 63

    [17]

    Chen J, Hu L, Deng J X, Xing X R 2015 Chem. Soc. Rev. 44 3522

    [18]

    Hummel F A 1951 J. Am. Ceram. Soc. 34 235

    [19]

    Agrawal D K, Roy R, McKinstry H A 1987 Mater. Res. Bull. 22 83

    [20]

    Wang F, Xie, Y, Chen J, Fu H, Xing X 2013 Appl. Phys. Lett. 103 221901

    [21]

    21 Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Compd. 339 207

    [22]

    Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148

    [23]

    Wang Z P, Song W B, ZHAO Y, Jiang Y J, Liang E J 2011 The Journal of Light Scattering 23 250

    [24]

    Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T, Chen D F 2012 Chin. Phys. B 21 116102

    [25]

    Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501

    [26]

    Song W B, Yuan, B H, Liu X H, Li Z Y, Wang J Q, Liang E J 2014 J. Mater. Res. 29 849

    [27]

    Yue J L, Zhou Y N, Shi S Q, Shadike Z L P Y, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810

    [28]

    Gava V, Martinotto A L, Perottoni C A 2012 Phys. Rev. Lett. 109 195503

    [29]

    Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B 90 045409

    [30]

    Wang L, Wang F, Yuan P F, Sun Q, Liang E J, Jia Y, Guo Z X 2013 Mater. Res. Bull. 48 2724

    [31]

    Ding Y, Yu S H, Liu C, Zang Z A 2007 Chem. Eur. J. 13 746

    [32]

    Harrison W T 1995 Mater. Res. Bull. 30 1325

    [33]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [34]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [36]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467

    [37]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121

    [38]

    Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    [39]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 382

    [40]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [41]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063

    [42]

    Xin X G, Chen X, Zhou J J, Shi S Q 2011 Acta Phys. Sin. 60 028201 (in Chinese) [忻晓桂, 陈香, 周晶晶, 施思齐 2011 物理学报 60 028201]

    [43]

    Fang J X, Lu D 1982 Solid State Physics (Vol. 1) (Shanghai: Shanghai Scientific Technical Publishers) p143 (in Chinese) [方俊鑫, 陆栋 1982 固体物理学(上册) (上海: 上海科学技术出版社) 第143页]

    [44]

    Xu Q, Jia G, Zhang J, Feng Z, Li C 2008 J. Phys. Chem. C 112 9387

    [45]

    Ravindran T R, Arora A K, Chandra S, Valsakumar M C, Shekar N C 2007 Phys. Rev. B 76 054302

    [46]

    Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y 2008 J. Phys. Chem. A 112 12582

    [47]

    Weller M T, Henry P F, Wilson C C 2000 J. Phys. Chem. B 104 12224

  • [1] 朱 骏, 毛翔宇, 陈小兵. Bi4-xLaxTi3O12-SrBi4Ti4O15,共生结构铁电材料拉曼光谱研究. 物理学报, 2004, 53(11): 3929-3933. doi: 10.7498/aps.53.3929
    [2] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究. 物理学报, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [3] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究. 物理学报, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [4] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究. 物理学报, 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [5] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [6] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [7] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [8] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [9] 孙正昊, 向鹏, 兰民, 孙源, 明星, 孟醒, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [10] 窦俊青, 康雪雅, 吐尔迪· 吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [11] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [12] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [13] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [14] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [15] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究. 物理学报, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [16] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [17] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [18] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [19] 彭丽萍, 尹建武, 徐 凌. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
  • 引用本文:
    Citation:
计量
  • 文章访问数:  850
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-13
  • 修回日期:  2015-12-31
  • 刊出日期:  2016-03-05

正交相Fe2(MoO4)3的制备与表征及其负膨胀行为的第一性原理研究

  • 1. 浙江理工大学理学院, 杭州 310018;
  • 2. 上海大学材料科学与工程学院, 上海 200444;
  • 3. 复旦大学激光化学研究所, 上海 200433;
  • 4. 中国科学院上海硅酸盐研究所, 上海 200050
  • 通信作者: 施思齐, sqshi@shu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 51372228)和上海浦江人才计划 (批准号: 14PJ1403900)资助的课题.

摘要: 采用水热合成法制备出Fe2(MoO4)3样品, 并用高温X-射线衍射、热重和差示扫描量热同步热分析仪对其进行表征, 发现样品在510 ℃附近发生低温单斜相和高温正交相之间的可逆相变, 且正交相表现出负膨胀特征. 采用第一性原理计算了正交相Fe2(MoO4)3 的原子、电子结构以及声子谱、声子态密度, 并和可获得的实验结果进行了系统的比较. 结果显示正交相Fe2(MoO4)3中MoO4四面体较之FeO6八面体具有更强的刚性. 发现最低频的光学支处具有最负的格林乃森(Grneisen)系数, MoO4四面体和FeO6 八面体相连的桥氧原子的横向振动、FeO6八面体柔性扭曲转动以及MoO4四面体的刚性翻转共同导致了Fe2(MoO4)3负膨胀现象的发生.

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回