搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可激发气体振动弛豫时间的两频点声测量重建算法

张克声 朱明 唐文勇 欧卫华 蒋学勤

可激发气体振动弛豫时间的两频点声测量重建算法

张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤
PDF
导出引用
导出核心图
  • 振动弛豫时间是可激发气体分子内外自由度能量转移速率的宏观体现, 它决定了声吸收谱峰值点对应的弛豫频率. 本文给出了等温、绝热定压和绝热定容三种不同热力学过程下振动弛豫时间的相互关系; 基于Petculescu和Lueptow [2005 Phys. Rev. Lett. 94 238301] 的弛豫过程合成算法, 推导了单一压强下两频点声测量值的弛豫时间重建算法. 该算法可应用于等温、绝热定压、绝热定容弛豫时间和弛豫频率的重建测量, 并避免了弛豫时间传统声测量方法需要不断改变气体腔体压强的问题. 仿真结果表明, 对于室温下CO2, CH4, Cl2, N2 和O2组成的多种气体, 重建的弛豫时间和弛豫频率与实验数据相符.
      通信作者: 朱明, zhuming@mail.hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61461008, 61371139, 61571201, 61402122)、贵州省科学技术基金(批准号: 黔科合J字[2015]2065, 黔科合LH字[2014]7361)和贵州理工学院高层次人才引进项目(批准号: XJGC20140601)资助的课题.
    [1]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon)

    [2]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Chem. Phys. 20 1591

    [3]

    Tanczos F I 1956 J. Chem. Phys. 25 439

    [4]

    Zhang K S, Ou W H, Jiang X Q, Long F, Hu M Z 2014 J. Korean Phys. Soc. 65 102

    [5]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [6]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [7]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 物理学报 61 174301]

    [8]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill)

    [9]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover)

    [10]

    Mason W P 1965 Physical Acoustics (Vol. II, Pt. A) (New York: Academic Press)

    [11]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic)

    [12]

    Shields F D 1970 J. Acoust. Soc. Am. 47 1262

    [13]

    Zhang K S, Wang S, Zhu M, Ding Y 2013 Meas. Sci. Technol. 24 055002

    [14]

    Zhang K S, Chen L K, Ou W H, Jiang X Q, Long F 2015 Acta Phys. Sin. 64 054302 (in Chinese) [张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞 2015 物理学报 64 054302]

    [15]

    Hu Y, Wang S, Zhu M, Zhang K S, Liu T T, Xu D Y 2014 Sens. Actuat. B: Chem. 203 1

    [16]

    Bass H E, Sutherland L C, Piercy J, Evans L (in Mason W P, Thurston R N (Vol. XVII) Ed.) 1984 Absorption of Sound by the Atmosphere in Physical Acoustics (Orlando: Academic)

    [17]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [18]

    Bass H E, Bauer H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [19]

    Shields F D 1960 J. Acoust. Soc. Am. 32 180

    [20]

    Angona F A 1953 J. Acoust. Soc. Am. 25 1116

    [21]

    Bass H E 1973 J. Chem. Phys. 58 4783

    [22]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acous. Soc. Am. 120 1779

  • [1]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon)

    [2]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Chem. Phys. 20 1591

    [3]

    Tanczos F I 1956 J. Chem. Phys. 25 439

    [4]

    Zhang K S, Ou W H, Jiang X Q, Long F, Hu M Z 2014 J. Korean Phys. Soc. 65 102

    [5]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [6]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [7]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 物理学报 61 174301]

    [8]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill)

    [9]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover)

    [10]

    Mason W P 1965 Physical Acoustics (Vol. II, Pt. A) (New York: Academic Press)

    [11]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic)

    [12]

    Shields F D 1970 J. Acoust. Soc. Am. 47 1262

    [13]

    Zhang K S, Wang S, Zhu M, Ding Y 2013 Meas. Sci. Technol. 24 055002

    [14]

    Zhang K S, Chen L K, Ou W H, Jiang X Q, Long F 2015 Acta Phys. Sin. 64 054302 (in Chinese) [张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞 2015 物理学报 64 054302]

    [15]

    Hu Y, Wang S, Zhu M, Zhang K S, Liu T T, Xu D Y 2014 Sens. Actuat. B: Chem. 203 1

    [16]

    Bass H E, Sutherland L C, Piercy J, Evans L (in Mason W P, Thurston R N (Vol. XVII) Ed.) 1984 Absorption of Sound by the Atmosphere in Physical Acoustics (Orlando: Academic)

    [17]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [18]

    Bass H E, Bauer H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [19]

    Shields F D 1960 J. Acoust. Soc. Am. 32 180

    [20]

    Angona F A 1953 J. Acoust. Soc. Am. 25 1116

    [21]

    Bass H E 1973 J. Chem. Phys. 58 4783

    [22]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acous. Soc. Am. 120 1779

  • [1] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系. 物理学报, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [2] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [3] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性. 物理学报, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [4] 任晓霞, 申凤娟, 林歆悠, 郑瑞伦. 石墨烯低温热膨胀和声子弛豫时间随温度的变化规律. 物理学报, 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [5] 汪杨, 赵伶玲. 单原子Lennard-Jones(L-J)体粘弹性弛豫时间的研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200138
    [6] 王兵, 吴秀清. 双色噪声驱动光学双稳系统的弛豫时间研究. 物理学报, 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [7] 马本堃. 自旋-晶格弛豫. 物理学报, 1965, 123(7): 1419-1436. doi: 10.7498/aps.21.1419
    [8] 李景德. 热电弛豫效应. 物理学报, 1984, 33(11): 1563-1568. doi: 10.7498/aps.33.1563
    [9] 霍裕平. 关联函数的长时间渐近行为——波对弛豫过程的影响. 物理学报, 1980, 169(1): 73-92. doi: 10.7498/aps.29.73
    [10] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [11] 梁宇宏, 李红娟, 尹辑文. 晶格弛豫方法研究PbSe量子点的带内弛豫过程. 物理学报, 2019, 68(12): 127301. doi: 10.7498/aps.68.20190187
    [12] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [13] 桑萃萃, 万建杰, 丁晓彬, 蒋 军, 董晨钟. 锂原子光电离过程中的弛豫效应. 物理学报, 2008, 57(4): 2152-2160. doi: 10.7498/aps.57.2152
    [14] A. GRECOS, 胡岗. 热库中振子弛豫过程的精确解. 物理学报, 1985, 34(1): 105-111. doi: 10.7498/aps.34.105
    [15] 张向群, 王殊, 朱明. 常温下氢气声转动弛豫模型研究. 物理学报, 2018, 67(9): 094301. doi: 10.7498/aps.67.20172665
    [16] 傅广生, 吴振球, 徐积仁, 黄南堂, 蒋义枫. BCl3振动激发弛豫的红外吸收研究. 物理学报, 1981, 30(11): 1456-1463. doi: 10.7498/aps.30.1456
    [17] 王鹏, 潘凤春, 郭晶晶, 李婷婷, 王旭明. 用双稳态势场模型研究观点转变的驱动-响应关系. 物理学报, 2020, 69(6): 060501. doi: 10.7498/aps.69.20191516
    [18] 龙述尧, 秦金旗, 田建辉, 韩 旭, 刘桂荣. SiC纳米杆的弛豫性能研究. 物理学报, 2007, 56(2): 643-648. doi: 10.7498/aps.56.643
    [19] 张开明, 叶令. Si(111)表面原子弛豫研究. 物理学报, 1980, 169(1): 122-126. doi: 10.7498/aps.29.122
    [20] 夏建白. Si,GaAs(111)表面弛豫效应. 物理学报, 1984, 33(2): 143-153. doi: 10.7498/aps.33.143
  • 引用本文:
    Citation:
计量
  • 文章访问数:  475
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-20
  • 修回日期:  2016-04-18
  • 刊出日期:  2016-07-05

可激发气体振动弛豫时间的两频点声测量重建算法

  • 1. 贵州理工学院信息工程学院, 贵阳 550003;
  • 2. 华中科技大学电子信息与通信学院, 武汉 430074;
  • 3. 贵州师范大学数据与计算机科学学院, 贵阳 550001
  • 通信作者: 朱明, zhuming@mail.hust.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61461008, 61371139, 61571201, 61402122)、贵州省科学技术基金(批准号: 黔科合J字[2015]2065, 黔科合LH字[2014]7361)和贵州理工学院高层次人才引进项目(批准号: XJGC20140601)资助的课题.

摘要: 振动弛豫时间是可激发气体分子内外自由度能量转移速率的宏观体现, 它决定了声吸收谱峰值点对应的弛豫频率. 本文给出了等温、绝热定压和绝热定容三种不同热力学过程下振动弛豫时间的相互关系; 基于Petculescu和Lueptow [2005 Phys. Rev. Lett. 94 238301] 的弛豫过程合成算法, 推导了单一压强下两频点声测量值的弛豫时间重建算法. 该算法可应用于等温、绝热定压、绝热定容弛豫时间和弛豫频率的重建测量, 并避免了弛豫时间传统声测量方法需要不断改变气体腔体压强的问题. 仿真结果表明, 对于室温下CO2, CH4, Cl2, N2 和O2组成的多种气体, 重建的弛豫时间和弛豫频率与实验数据相符.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回