搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于4H-SiC肖特基势垒二极管的射线探测器

杜园园 张春雷 曹学蕾

基于4H-SiC肖特基势垒二极管的射线探测器

杜园园, 张春雷, 曹学蕾
PDF
导出引用
导出核心图
  • 针对极端环境下耐高温和耐辐照半导体核探测器的研制需求,采用外延层厚度为100 upm的4H碳化硅(4H-SiC)制备成肖特基二极管探测器,研究了该探测器对241Am源射线的能谱响应.采用磁控溅射金属Ni制备了肖特基二极管的欧姆接触和肖特基接触,利用室温电流-电压和电容-电压测试研究了二极管的电学特性.欧姆特性测试表明,1050℃退火时,欧姆接触特性最好.从正向电流-电压曲线得出二极管肖特基势垒高度为1.617 eV,理想因子为1.127,表明探测器具备良好的热电子发射特性.从电容-电压曲线获得二极管外延层净掺杂浓度为2.9031014 cm-3,并研究了自由载流子浓度在外延层中的纵向分布.在反向偏压为500 V时,二极管的漏电流只有2.11 nA,具有较高的击穿电压.测得在-300 V条件下,SiC二极管探测器对能量为59.5 keV的射线的能量分辨率为9.49%(5.65 keV).
      通信作者: 杜园园, duyuanyuan@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11203026)资助的课题.
    [1]

    Rogowski J, Kubiak A 2012 Mater. Sci. Eng. B 177 1318

    [2]

    Siad M, Vargas P C, Nkosi M, Saidi D, Souami N, Daas N, Chami C A 2009 Appl. Surf. Sci. 256 256

    [3]

    Bertuccio G, Caccia S, Puglisi D, Macera D 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 193

    [4]

    Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi G P, Lanzieri C, Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645

    [5]

    Han C, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Guo H, Wang Y H 2015 Chin. Phys. B 24 117304

    [6]

    Yuan L, Zhang Y M, Song Q W, Tang X Y, Zhang Y M 2015 Chin. Phys. B 24 068502

    [7]

    Chaudhuri K S, Krishna M R, Zavalla J K, Mandal C K 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214

    [8]

    Mandal C K, Muzykov G P, Chaudhuri K S, Terry R J 2013 IEEE Trans. Nucl. Sci. 60 2888

    [9]

    Flammang W R, Seidel G J, Ruddy H F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 579 177

    [10]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Fan X Q 2013 High Power Laser Part. Beams 25 1793 (in Chinese)[吴健, 雷家荣, 蒋勇, 陈雨, 荣茹, 范晓强2013强激光与粒子束25 1793]

    [11]

    Wu J, Jiang Y, Gan L, Li M, Zou D H, Rong R, Lu Y, Li J J, Fan X Q, Lei J R 2015 High Power Laser Part. Beams 27 014004 (in Chinese)[吴健, 蒋勇, 甘雷, 李勐, 邹德慧, 荣茹, 鲁艺, 李俊杰, 范晓强, 雷家荣2015强激光与粒子束27 014004]

    [12]

    Jiang Y, Wu J, Wei J J, Fan X Q, Chen Y, Rong R, Zou D H, Li M, Bai S, Chen G, Li L 2013 Atomic Energy Sci. Technol. 47 664 (in Chinese)[蒋勇, 吴健, 韦建军, 范晓强, 陈雨, 荣茹, 邹德慧, 李勐, 柏松, 陈刚, 李理2013原子能科学技术47 664]

    [13]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Zou D H, Fan X Q, Chen G, Li L, Bai S 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 708 72

    [14]

    Iwamoto N, Johnson C B, Hoshino N, Ito M, Tsuchida H, Kojima K, Ohshima T 2013 J. Appl. Phys. 113 143714

    [15]

    Tong W L, Sun Y J, Liu Y H, Zhao G J, Chen Z Z 2015 J. Shanghai Normal Univ. (Nat. Sci.) 44 430(in Chinese)[童武林, 孙玉俊, 刘益宏, 赵高杰, 陈之战2015上海师范大学学报(自然科学版) 44 430]

    [16]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese)[刘杰, 郝跃, 冯倩, 王冲, 张进城, 郭亮良2007物理学报56 3483]

    [17]

    Shur M, Rumyantsev S, Levinshtein M (translated by Yang Y T, Jia H J, Duan B X) 2012 SiC Mareials and Devices, Volume I&Ⅱ (Beijing:Publishing House of Electroics Industry) pp88-92(in Chinese)[Shur M, Rumyantsev S, Levinshtein M主编(杨银堂, 贾护军, 段宝兴译) 2012碳化硅半导体材料与器件(北京:电子工业出版社)第88–92页]

    [18]

    Zha G Q, Wang T, Xu Y D, Jie W Q 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东, 介万奇2013物理42 862]

    [19]

    Bertuccio G, Casiraghi R 2003 IEEE Trans. Nucl. Sci. 50 175

    [20]

    Lees E J, Bassford J D, Fraser W G, Horsfall B A, Vassilevski V K, Wright G N, Owens A 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 578 226

    [21]

    Jiang Y, Fan X Q, Rong R, Wu J, Bai S, Li L 2012 Nucl. Electron. Detect. Technol. 32 1372 (in Chinese)[蒋勇, 范晓强, 荣茹, 吴建, 柏松, 李理2012核电子学与探测技术32 1372]

    [22]

    Mandal C K, Chaudhuri K S, Nguyen V K, Mannan A M 2014 IEEE Trans. Nucl. Sci. 61 2338

  • [1]

    Rogowski J, Kubiak A 2012 Mater. Sci. Eng. B 177 1318

    [2]

    Siad M, Vargas P C, Nkosi M, Saidi D, Souami N, Daas N, Chami C A 2009 Appl. Surf. Sci. 256 256

    [3]

    Bertuccio G, Caccia S, Puglisi D, Macera D 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 193

    [4]

    Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi G P, Lanzieri C, Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645

    [5]

    Han C, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Guo H, Wang Y H 2015 Chin. Phys. B 24 117304

    [6]

    Yuan L, Zhang Y M, Song Q W, Tang X Y, Zhang Y M 2015 Chin. Phys. B 24 068502

    [7]

    Chaudhuri K S, Krishna M R, Zavalla J K, Mandal C K 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214

    [8]

    Mandal C K, Muzykov G P, Chaudhuri K S, Terry R J 2013 IEEE Trans. Nucl. Sci. 60 2888

    [9]

    Flammang W R, Seidel G J, Ruddy H F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 579 177

    [10]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Fan X Q 2013 High Power Laser Part. Beams 25 1793 (in Chinese)[吴健, 雷家荣, 蒋勇, 陈雨, 荣茹, 范晓强2013强激光与粒子束25 1793]

    [11]

    Wu J, Jiang Y, Gan L, Li M, Zou D H, Rong R, Lu Y, Li J J, Fan X Q, Lei J R 2015 High Power Laser Part. Beams 27 014004 (in Chinese)[吴健, 蒋勇, 甘雷, 李勐, 邹德慧, 荣茹, 鲁艺, 李俊杰, 范晓强, 雷家荣2015强激光与粒子束27 014004]

    [12]

    Jiang Y, Wu J, Wei J J, Fan X Q, Chen Y, Rong R, Zou D H, Li M, Bai S, Chen G, Li L 2013 Atomic Energy Sci. Technol. 47 664 (in Chinese)[蒋勇, 吴健, 韦建军, 范晓强, 陈雨, 荣茹, 邹德慧, 李勐, 柏松, 陈刚, 李理2013原子能科学技术47 664]

    [13]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Zou D H, Fan X Q, Chen G, Li L, Bai S 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 708 72

    [14]

    Iwamoto N, Johnson C B, Hoshino N, Ito M, Tsuchida H, Kojima K, Ohshima T 2013 J. Appl. Phys. 113 143714

    [15]

    Tong W L, Sun Y J, Liu Y H, Zhao G J, Chen Z Z 2015 J. Shanghai Normal Univ. (Nat. Sci.) 44 430(in Chinese)[童武林, 孙玉俊, 刘益宏, 赵高杰, 陈之战2015上海师范大学学报(自然科学版) 44 430]

    [16]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese)[刘杰, 郝跃, 冯倩, 王冲, 张进城, 郭亮良2007物理学报56 3483]

    [17]

    Shur M, Rumyantsev S, Levinshtein M (translated by Yang Y T, Jia H J, Duan B X) 2012 SiC Mareials and Devices, Volume I&Ⅱ (Beijing:Publishing House of Electroics Industry) pp88-92(in Chinese)[Shur M, Rumyantsev S, Levinshtein M主编(杨银堂, 贾护军, 段宝兴译) 2012碳化硅半导体材料与器件(北京:电子工业出版社)第88–92页]

    [18]

    Zha G Q, Wang T, Xu Y D, Jie W Q 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东, 介万奇2013物理42 862]

    [19]

    Bertuccio G, Casiraghi R 2003 IEEE Trans. Nucl. Sci. 50 175

    [20]

    Lees E J, Bassford J D, Fraser W G, Horsfall B A, Vassilevski V K, Wright G N, Owens A 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 578 226

    [21]

    Jiang Y, Fan X Q, Rong R, Wu J, Bai S, Li L 2012 Nucl. Electron. Detect. Technol. 32 1372 (in Chinese)[蒋勇, 范晓强, 荣茹, 吴建, 柏松, 李理2012核电子学与探测技术32 1372]

    [22]

    Mandal C K, Chaudhuri K S, Nguyen V K, Mannan A M 2014 IEEE Trans. Nucl. Sci. 61 2338

  • [1] 杨丽侠, 杜 磊, 陈晓东, 李群伟, 张 莹, 赵志刚, 何 亮, 包军林, 庄奕琪. 60Co γ-射线辐照对肖特基二极管1/f噪声的影响. 物理学报, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
    [2] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究. 物理学报, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [3] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析. 物理学报, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [4] 贾仁需, 张义门, 张玉明, 王悦湖. N型4H-SiC同质外延生长. 物理学报, 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [5] 苗瑞霞, 张玉明, 汤晓燕, 张义门. 4H-SiC中基面位错发光特性研究. 物理学报, 2011, 60(3): 037808. doi: 10.7498/aps.60.037808
    [6] 程萍, 张玉明, 张义门. 退火对非故意掺杂4H-SiC外延材料386 nm和388 nm发射峰的影响. 物理学报, 2011, 60(1): 017103. doi: 10.7498/aps.60.017103
    [7] 徐昌发, 杨银堂, 刘莉. 4H-SiC MOSFET的温度特性研究. 物理学报, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
    [8] 翟东媛, 赵毅, 蔡银飞, 施毅, 郑有炓. 沟槽形状对硅基沟槽式肖特基二极管电学特性的影响. 物理学报, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [9] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管. 物理学报, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [10] 杨林安, 张义门, 龚仁喜, 张玉明. 4H-SiC射频功率MESFET的自热效应分析. 物理学报, 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
    [11] 徐重阳, 邹雪城, 王长安, 赵伯芳, 周雪梅, 曾祥斌, 张洪涛. 4H-SiC纳米薄膜的微结构及其光电性质研究. 物理学报, 2002, 51(2): 304-309. doi: 10.7498/aps.51.304
    [12] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [13] 王艳新, 张琦锋, 孙 晖, 常艳玲, 吴锦雷. ZnO纳米线二极管发光器件制备及特性研究. 物理学报, 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [14] 刘 杰, 郝 跃, 冯 倩, 王 冲, 张进城, 郭亮良. 基于I-V-T和C-V-T的GaN上Ni/Au肖特基接触特性研究. 物理学报, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
    [15] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200424
    [16] 张林, 韩超, 马永吉, 张义门, 张玉明. Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应. 物理学报, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [17] 张林, 肖剑, 邱彦章, 程鸿亮. Ti/4H-SiC肖特基势垒二极管抗辐射特性的研究. 物理学报, 2011, 60(5): 056106. doi: 10.7498/aps.60.056106
    [18] 汤晓燕, 戴小伟, 张玉明, 张义门. 套刻偏差对4H-SiC 浮动结结势垒肖特基二极管的影响研究. 物理学报, 2012, 61(8): 088501. doi: 10.7498/aps.61.088501
    [19] 林鸿溢. 利用肖特基势垒特性研究4mm波段硅雪崩二极管的杂质分布. 物理学报, 1978, 160(3): 291-302. doi: 10.7498/aps.27.291
    [20] 杜克明, 张恒利, 闫 莹. 激光二极管端面抽运Nd∶YVO4晶体连续输出板条激光器研究. 物理学报, 2008, 57(11): 6982-6986. doi: 10.7498/aps.57.6982
  • 引用本文:
    Citation:
计量
  • 文章访问数:  646
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 修回日期:  2016-07-29
  • 刊出日期:  2016-10-20

基于4H-SiC肖特基势垒二极管的射线探测器

  • 1. 中国科学院高能物理研究所, 粒子天体物理重点实验室, 北京 100049
  • 通信作者: 杜园园, duyuanyuan@ihep.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11203026)资助的课题.

摘要: 针对极端环境下耐高温和耐辐照半导体核探测器的研制需求,采用外延层厚度为100 upm的4H碳化硅(4H-SiC)制备成肖特基二极管探测器,研究了该探测器对241Am源射线的能谱响应.采用磁控溅射金属Ni制备了肖特基二极管的欧姆接触和肖特基接触,利用室温电流-电压和电容-电压测试研究了二极管的电学特性.欧姆特性测试表明,1050℃退火时,欧姆接触特性最好.从正向电流-电压曲线得出二极管肖特基势垒高度为1.617 eV,理想因子为1.127,表明探测器具备良好的热电子发射特性.从电容-电压曲线获得二极管外延层净掺杂浓度为2.9031014 cm-3,并研究了自由载流子浓度在外延层中的纵向分布.在反向偏压为500 V时,二极管的漏电流只有2.11 nA,具有较高的击穿电压.测得在-300 V条件下,SiC二极管探测器对能量为59.5 keV的射线的能量分辨率为9.49%(5.65 keV).

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回