搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于行扫描测量的运动目标压缩成像

王盼盼 姚旭日 刘雪峰 俞文凯 邱棚 翟光杰

基于行扫描测量的运动目标压缩成像

王盼盼, 姚旭日, 刘雪峰, 俞文凯, 邱棚, 翟光杰
PDF
导出引用
  • 运动目标成像在实际应用中具有重要作用,而如何获取高质量运动目标图像是该领域研究中的一个热点问题.本文采用行扫描采样的方式,通过构造运动测量矩阵,建立一种基于压缩感知理论的运动物体成像模型,并通过仿真及实验,验证了该模型对于恢复运动物体图像信息的可行性.实验结果证明,该方法可获得高质量的运动物体成像.通过引入图像质量评价标准,分析了运动物体成像质量与速度之间的关系.将该方法与普通压缩感知算法进行比较,结果证明,在相同速度下,该方法的成像质量更高.该方法在无人机对地观测、产品线视频监测等领域有着很好的应用前景.
      通信作者: 翟光杰, gjzhai@nssc.ac.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2013YQ030595)、国家高技术研究发展计划(批准号:2013AA122902)、国家自然科学基金(批准号:61575207)和中国科学院国防科技创新基金项目(批准号:CXJJ-16S047)资助的课题.
    [1]

    Candès E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489

    [2]

    Donoho D L 2004 IEEE Trans. Inf. Theory 52 1289

    [3]

    Candès E J 2006 Proc. Int. Congr. Math. 3 1433

    [4]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14

    [5]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83

    [6]

    Takhar D, Laska J N, Wakin M B, Duarte M F, Baron D, Sarvotham S, Kelly K F, Baraniuk R G 2010 Proc. SPIE San Jose, CA, USA, Feb. 2, 2006 p43

    [7]

    Candès E J, Romberg J, Tao T 2006 Commun. Pure Appl. Math. 59 1027

    [8]

    Howland G A, Howell J C 2013 Phys. Rev. X 3 1071

    [9]

    Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D, Han S S 2012 Appl. Phys. Lett. 101 141123

    [10]

    Chen G H, Tang J, Leng S H 2008 Med. Phys. 35 660

    [11]

    Gross D, Liu Y K, Flammia S T, Becker S, Eisert J 2010 Phys. Rev. Lett. 105 2903

    [12]

    Zhu L, Zhang W, Elnatan D, Huang B 2012 Nat. Methods 9 721

    [13]

    Wu Y, Mirza I O, Arce G R, Prather D W 2011 Opt. Lett. 36 2692

    [14]

    Arce G R, Brady D J, Carin L, Arguello H, Kittle D S 2014 IEEE Signal Process. Mag. 31 105

    [15]

    Spagnolo P, Orazio T D, Leo M, Distante A 2006 Image Vis. Comp. 24 411

    [16]

    Zhang C, Gong W L, Han S S 2012 Chin. J. Lasers 12 204 (in Chinese)[张聪, 龚文林, 韩申生2012中国激光12 204]

    [17]

    Li X H, Deng C J, Chen M L, Gong W L, Han S S 2015 Photon. Res. 3 153

    [18]

    Li E R, Bo Z W, Chen M L, Gong W L, Han S S 2014 Appl. Phys. Lett. 104 251120

    [19]

    Yan F X, Zhu J B, Liu J Y 2014 Spacecraft Recovery & Remote Sensing 35 54 (in Chinese)[严奉霞, 朱炬波, 刘吉英2014航天返回与遥感35 54]

    [20]

    Liu J Y, Zhu J B, Yan F X, Zhang Z 2013 Inverse Probl.Imag. 4 1295

    [21]

    Yu W K, Yao X R, Liu X F, Li L Z, Zhai G J 2015 Appl. Opt. 54 4249

    [22]

    Yu W K, Yao X R, Liu X F, Lan R M, Wu L A, Zhai G J 2016 Opt. Comm. 371 105

    [23]

    Yu W K, Liu X F, Yao X R, Wang C 2014 Sci. Rep. 4 5834

    [24]

    Yu W K, Liu X F, Yao X R, Wang C, Zhai G J, Zhao Q 2014 Phys. Lett. A 378 3406

    [25]

    Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Appl. Opt. 45 6940

    [26]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105

    [27]

    Howland G A, Dixon P B, Howell J C 2011 Appl. Opt. 50 5917

    [28]

    Gonzalez R C, Woods R E(translated by Ruan Q Q, Ruan Y Z) 2010 Digital Image Processing (Beijing:Publishing House of Electronics Industry) pp40-55(in Chinese)[冈萨雷斯, 伍兹著(阮秋琦, 阮宇智译) 2013数字图像处理(北京:电子工业出版社)第40–55页]

    [29]

    Li M F, Zhang Y R, Luo K H, Fan H 2013 Phys. Rev. A 87 2285

    [30]

    Li M F, Zhang Y R, Fan H, Wu L A, Liu X F, Yao X R, Luo K H 2013 Appl. Phys. Lett. 103 211119

    [31]

    Yu W K, Li X, Yao X R, Liu X F, Wu L A, Zhai G J 2013 Appl. Opt. 52 7882

    [32]

    Gu Y F, Yan B, Li L, W F, Han Y, Chen J 2014 Acta Phys. Sin. 63 018701 (in Chinese)[古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健2014物理学报63 018701]

    [33]

    Yu W K, Li M F, Yao X R, Liu X F, Wu L A, Zhai G J 2014 Opt. Express 22 7133

    [34]

    Candès E J, Tao T 2005 IEEE Trans. Inf. Theory 51 4203

    [35]

    Baraniuk R G, Davenport M, Devore R A, Wakin M B 2008 Constr. Approx. 28 253

  • [1]

    Candès E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489

    [2]

    Donoho D L 2004 IEEE Trans. Inf. Theory 52 1289

    [3]

    Candès E J 2006 Proc. Int. Congr. Math. 3 1433

    [4]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14

    [5]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83

    [6]

    Takhar D, Laska J N, Wakin M B, Duarte M F, Baron D, Sarvotham S, Kelly K F, Baraniuk R G 2010 Proc. SPIE San Jose, CA, USA, Feb. 2, 2006 p43

    [7]

    Candès E J, Romberg J, Tao T 2006 Commun. Pure Appl. Math. 59 1027

    [8]

    Howland G A, Howell J C 2013 Phys. Rev. X 3 1071

    [9]

    Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D, Han S S 2012 Appl. Phys. Lett. 101 141123

    [10]

    Chen G H, Tang J, Leng S H 2008 Med. Phys. 35 660

    [11]

    Gross D, Liu Y K, Flammia S T, Becker S, Eisert J 2010 Phys. Rev. Lett. 105 2903

    [12]

    Zhu L, Zhang W, Elnatan D, Huang B 2012 Nat. Methods 9 721

    [13]

    Wu Y, Mirza I O, Arce G R, Prather D W 2011 Opt. Lett. 36 2692

    [14]

    Arce G R, Brady D J, Carin L, Arguello H, Kittle D S 2014 IEEE Signal Process. Mag. 31 105

    [15]

    Spagnolo P, Orazio T D, Leo M, Distante A 2006 Image Vis. Comp. 24 411

    [16]

    Zhang C, Gong W L, Han S S 2012 Chin. J. Lasers 12 204 (in Chinese)[张聪, 龚文林, 韩申生2012中国激光12 204]

    [17]

    Li X H, Deng C J, Chen M L, Gong W L, Han S S 2015 Photon. Res. 3 153

    [18]

    Li E R, Bo Z W, Chen M L, Gong W L, Han S S 2014 Appl. Phys. Lett. 104 251120

    [19]

    Yan F X, Zhu J B, Liu J Y 2014 Spacecraft Recovery & Remote Sensing 35 54 (in Chinese)[严奉霞, 朱炬波, 刘吉英2014航天返回与遥感35 54]

    [20]

    Liu J Y, Zhu J B, Yan F X, Zhang Z 2013 Inverse Probl.Imag. 4 1295

    [21]

    Yu W K, Yao X R, Liu X F, Li L Z, Zhai G J 2015 Appl. Opt. 54 4249

    [22]

    Yu W K, Yao X R, Liu X F, Lan R M, Wu L A, Zhai G J 2016 Opt. Comm. 371 105

    [23]

    Yu W K, Liu X F, Yao X R, Wang C 2014 Sci. Rep. 4 5834

    [24]

    Yu W K, Liu X F, Yao X R, Wang C, Zhai G J, Zhao Q 2014 Phys. Lett. A 378 3406

    [25]

    Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Appl. Opt. 45 6940

    [26]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105

    [27]

    Howland G A, Dixon P B, Howell J C 2011 Appl. Opt. 50 5917

    [28]

    Gonzalez R C, Woods R E(translated by Ruan Q Q, Ruan Y Z) 2010 Digital Image Processing (Beijing:Publishing House of Electronics Industry) pp40-55(in Chinese)[冈萨雷斯, 伍兹著(阮秋琦, 阮宇智译) 2013数字图像处理(北京:电子工业出版社)第40–55页]

    [29]

    Li M F, Zhang Y R, Luo K H, Fan H 2013 Phys. Rev. A 87 2285

    [30]

    Li M F, Zhang Y R, Fan H, Wu L A, Liu X F, Yao X R, Luo K H 2013 Appl. Phys. Lett. 103 211119

    [31]

    Yu W K, Li X, Yao X R, Liu X F, Wu L A, Zhai G J 2013 Appl. Opt. 52 7882

    [32]

    Gu Y F, Yan B, Li L, W F, Han Y, Chen J 2014 Acta Phys. Sin. 63 018701 (in Chinese)[古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健2014物理学报63 018701]

    [33]

    Yu W K, Li M F, Yao X R, Liu X F, Wu L A, Zhai G J 2014 Opt. Express 22 7133

    [34]

    Candès E J, Tao T 2005 IEEE Trans. Inf. Theory 51 4203

    [35]

    Baraniuk R G, Davenport M, Devore R A, Wakin M B 2008 Constr. Approx. 28 253

  • [1] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法. 物理学报, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [2] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [3] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [4] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [5] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [6] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [7] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法. 物理学报, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [8] 丁亚辉, 孙玉发, 朱金玉. 一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法. 物理学报, 2018, 67(10): 100201. doi: 10.7498/aps.67.20172543
    [9] 郭静波, 汪韧. 基于混沌序列和RIPless理论的循环压缩测量矩阵的构造. 物理学报, 2014, 63(19): 198402. doi: 10.7498/aps.63.198402
    [10] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构. 物理学报, 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [11] 仲亚军, 刘娇, 梁文强, 赵生妹. 针对多散斑图的差分压缩鬼成像方案研究. 物理学报, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [12] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [13] 郭静波, 汪韧. 交替寻优生成元素幅值结合混沌随机相位构造循环测量矩阵. 物理学报, 2015, 64(13): 130702. doi: 10.7498/aps.64.130702
    [14] 梁国龙, 马巍, 范展, 王逸林. 矢量声纳高速运动目标稳健高分辨方位估计 . 物理学报, 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [15] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [16] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [17] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [18] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [19] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [20] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201019
  • 引用本文:
    Citation:
计量
  • 文章访问数:  892
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-05
  • 修回日期:  2016-09-27
  • 刊出日期:  2017-01-05

基于行扫描测量的运动目标压缩成像

  • 1. 中国科学院国家空间科学中心, 复杂航天系统电子信息技术重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100190;
  • 3. 北京理工大学物理学院, 量子技术研究中心, 北京 100081
  • 通信作者: 翟光杰, gjzhai@nssc.ac.cn
    基金项目: 

    国家重大科学仪器设备开发专项(批准号:2013YQ030595)、国家高技术研究发展计划(批准号:2013AA122902)、国家自然科学基金(批准号:61575207)和中国科学院国防科技创新基金项目(批准号:CXJJ-16S047)资助的课题.

摘要: 运动目标成像在实际应用中具有重要作用,而如何获取高质量运动目标图像是该领域研究中的一个热点问题.本文采用行扫描采样的方式,通过构造运动测量矩阵,建立一种基于压缩感知理论的运动物体成像模型,并通过仿真及实验,验证了该模型对于恢复运动物体图像信息的可行性.实验结果证明,该方法可获得高质量的运动物体成像.通过引入图像质量评价标准,分析了运动物体成像质量与速度之间的关系.将该方法与普通压缩感知算法进行比较,结果证明,在相同速度下,该方法的成像质量更高.该方法在无人机对地观测、产品线视频监测等领域有着很好的应用前景.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回