搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯吸附Li团簇的第一性原理计算

杨光敏 梁志聪 黄海华

引用本文:
Citation:

石墨烯吸附Li团簇的第一性原理计算

杨光敏, 梁志聪, 黄海华

The first-principle calculation on the Li cluster adsorbed on graphene

Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua
PDF
导出引用
  • 构建了单层六方石墨烯超晶胞结构,以吸附不同尺寸的Li团簇,Li:C摩尔比例皆为1:6.采用基于密度泛函理论的第一性原理,计算了其态密度、差分电荷密度、能带,分析了Li团簇与石墨烯吸附前后的电荷分布情况及Li-C成键类型,二者之间的电荷分布决定了两者的相互作用.使用热力学的方法及成核机制进行分析,得出成核的可能性与团簇尺寸的关系,研究了一定浓度下的锂在石墨烯上的成核问题.相应的计算结果有助于理论上深入理解锂电池储能机理.
    As a stable single sheet of carbon atoms with a honeycomb lattice, graphene has become attractive for its potential applications in electrochemical storage devices, such as anodes for rechargeable Li batteries. Since both sides of it can hold adsorbents, a graphene sheet is expected to have extra storage sites and therefore it has a possibly higher capacity than graphite. However, certain shortcomings of Li battery, such as instability lead to battery failure under overcharging or overvoltage conditions. The limit to capacity results in a short time of discharge. Thus, more attention should be paid to the stabilities of electrode materials, such as Li cluster nucleation on graphene leading to dendrite formation and failure of the Li-ion battery. In this work, we build a supercell model of single layer graphene with hexagonal structure, and then change the size of Li cluster which is used to be adsorbed on graphene, with keeping m Li:C ratio at 1:6. Using the first principle based on density functional theory, we calculate the density of states, charge density difference and energy band structure. The interaction between Li and pristine graphene is studied in detail by analyzing the electronic properties and charge distribution of the isolated Li clusters and Li clusters adsorbed on graphene. It is found that the ionic bonding can be formed at the interface between Li clusters and graphene, and the charge transfer controls the interaction of the Li-carbon nanostructure. Combing thermodynamics method with the nucleation mechanism, the relationship between the cluster size and nucleation probability is analyzed, and the nucleation on graphene of Li with a certain concentration is also investigated. We estimate the nucleation barrier for Li on graphene and investigate the stability of Li adsorption on graphene by considering the effects of Li concentration and temperature. The Li concentration of 16.7% is considered for the formation of clusters with different sizes on graphene. With the size of Li cluster increasing, the cluster adsorbed on the graphene begins to be more stable than the single Li atom. The formation energy for the cluster is found to increase with the increase of temperature, and it is negative, meaning that Li cluster can be formed. It is expected that the corresponding calculation results from this atomistic simulation will shed some light on the in-depth understanding of Li-storage on graphene and the cycling stability and dendrite formation in Li-ion batteries with graphene-based materials serving as the anode.
      通信作者: 杨光敏, yangguangmin@cncnc.edu.cn
    • 基金项目: 长春师范大学自然科学基金(批准号:2015-010)资助的课题.
      Corresponding author: Yang Guang-Min, yangguangmin@cncnc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Changchun Normal University, China (Grant No. 2015-010).
    [1]

    Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I 2008Nano Lett. 8 2277

    [2]

    Lian P C, Zhu X F, Liang S Z, Li Z, Yang W S, Wang H H 2010Electrochim.Acta 55 3909

    [3]

    Jaber-Ansari L, Puntambekar K P, Tavassol H, Yildirim H, Kinaci A, Kumar R, Saldana S J, Gewirth A A, Greeley J P, Chan M K, Hersam M C 2014ACS Appl.Mater.Interfaces 6 17626

    [4]

    Zhao X, Hayner C M, Kung M C, Kung H H 2011ACS Nano 5 8739

    [5]

    Jang B Z, Liu C G, Neff D, Yu Z N, Wang M C, Xiong W, Zhamu A 2011Nano Lett. 11 3785

    [6]

    Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf L V, Zhang J, Aksay I A, Liu J 2009ACS Nano 3 907

    [7]

    Zheng J, Ren Z, Guo P, Fang L, Fan J 2011Appl.Surf Sci 258 1651

    [8]

    Lv W, Tang D M, He Y B, You C H, Shi Z Q, Chen X C, Chen C M, Hou P X, Liu C, Yang Q H 2009ACS Nano 3 3730-6

    [9]

    Wang G X, Shen X D, Yao J, Park J 2009Carbon 47 2049

    [10]

    Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z 2009Chem.Mater. 21 3136

    [11]

    Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman B D J 2010Am.Chem.Soc. 132 12556

    [12]

    Ferre-Vilaplana A 2008J.Phys.Chem.C 112 3998

    [13]

    Froudakis G E 2001Nano Lett. 1 531

    [14]

    Garay-Tapia A M, Romero A H, Barone V 2012J.Chem.Theory Comput. 8 1064

    [15]

    Khantha M, Cordero N A, Molina L M, Alonso J A, Girifalco L A 2004Phys.Rev.B 70 125422

    [16]

    Chan K T, Neaton J B, Cohen M L 2008Phys.Rev.B 77 235430

    [17]

    Yang C K 2009Appl.Phys.Lett. 94 163115

    [18]

    Medeiros P V C, Mota F D, Mascarenhas A J S, de Castilho C M C 2010Nanotechnology 21 115701

    [19]

    Klintenberg M, Lebegue S, Katsnelson M I, Eriksson O 2010Phys.Rev.B 81 085433

    [20]

    Tarascon J M, Armand M 2001Nature 414 359

    [21]

    Mayers M Z, Kaminski J W, Miller Ⅲ T F 2012J.Phys.Chem.C 116 26214

    [22]

    Harris S J, Timmons A, Baker D R, Monroe C 2010Chem.Phys.Lett. 485 265

    [23]

    Kresse G, Furthmller J 1996J.Comput.Mater.Sci. 6 15

    [24]

    Blchl P E 1994Phys.Rev.B 50 17953

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992Phys.Rev.B 46 6671

    [26]

    Yang G M, Zhang H Z, Fan X F, Zheng W T 2015J.Phys.Chem.C 119 6464

    [27]

    Fan X F, Liu L, Kuo J L, Shen Z X 2010J.Phys.Chem.C 114 14939

    [28]

    Henkelman R, Arnaldsson A, Jonsson H J 2006Comput.Mater.Sci. 36 354

    [29]

    Liu M, Kutana A, Liu Y, Yakobson B I 2014J.Phys.Chem.Lett. 5 1225

    [30]

    Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F, Kostecki R 2010Nano Lett. 10 3386

  • [1]

    Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I 2008Nano Lett. 8 2277

    [2]

    Lian P C, Zhu X F, Liang S Z, Li Z, Yang W S, Wang H H 2010Electrochim.Acta 55 3909

    [3]

    Jaber-Ansari L, Puntambekar K P, Tavassol H, Yildirim H, Kinaci A, Kumar R, Saldana S J, Gewirth A A, Greeley J P, Chan M K, Hersam M C 2014ACS Appl.Mater.Interfaces 6 17626

    [4]

    Zhao X, Hayner C M, Kung M C, Kung H H 2011ACS Nano 5 8739

    [5]

    Jang B Z, Liu C G, Neff D, Yu Z N, Wang M C, Xiong W, Zhamu A 2011Nano Lett. 11 3785

    [6]

    Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf L V, Zhang J, Aksay I A, Liu J 2009ACS Nano 3 907

    [7]

    Zheng J, Ren Z, Guo P, Fang L, Fan J 2011Appl.Surf Sci 258 1651

    [8]

    Lv W, Tang D M, He Y B, You C H, Shi Z Q, Chen X C, Chen C M, Hou P X, Liu C, Yang Q H 2009ACS Nano 3 3730-6

    [9]

    Wang G X, Shen X D, Yao J, Park J 2009Carbon 47 2049

    [10]

    Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z 2009Chem.Mater. 21 3136

    [11]

    Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman B D J 2010Am.Chem.Soc. 132 12556

    [12]

    Ferre-Vilaplana A 2008J.Phys.Chem.C 112 3998

    [13]

    Froudakis G E 2001Nano Lett. 1 531

    [14]

    Garay-Tapia A M, Romero A H, Barone V 2012J.Chem.Theory Comput. 8 1064

    [15]

    Khantha M, Cordero N A, Molina L M, Alonso J A, Girifalco L A 2004Phys.Rev.B 70 125422

    [16]

    Chan K T, Neaton J B, Cohen M L 2008Phys.Rev.B 77 235430

    [17]

    Yang C K 2009Appl.Phys.Lett. 94 163115

    [18]

    Medeiros P V C, Mota F D, Mascarenhas A J S, de Castilho C M C 2010Nanotechnology 21 115701

    [19]

    Klintenberg M, Lebegue S, Katsnelson M I, Eriksson O 2010Phys.Rev.B 81 085433

    [20]

    Tarascon J M, Armand M 2001Nature 414 359

    [21]

    Mayers M Z, Kaminski J W, Miller Ⅲ T F 2012J.Phys.Chem.C 116 26214

    [22]

    Harris S J, Timmons A, Baker D R, Monroe C 2010Chem.Phys.Lett. 485 265

    [23]

    Kresse G, Furthmller J 1996J.Comput.Mater.Sci. 6 15

    [24]

    Blchl P E 1994Phys.Rev.B 50 17953

    [25]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992Phys.Rev.B 46 6671

    [26]

    Yang G M, Zhang H Z, Fan X F, Zheng W T 2015J.Phys.Chem.C 119 6464

    [27]

    Fan X F, Liu L, Kuo J L, Shen Z X 2010J.Phys.Chem.C 114 14939

    [28]

    Henkelman R, Arnaldsson A, Jonsson H J 2006Comput.Mater.Sci. 36 354

    [29]

    Liu M, Kutana A, Liu Y, Yakobson B I 2014J.Phys.Chem.Lett. 5 1225

    [30]

    Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F, Kostecki R 2010Nano Lett. 10 3386

  • [1] 沈丁, 刘耀汉, 唐树伟, 董伟, 孙闻, 王来贵, 杨绍斌. Sin团簇/石墨烯(n ≤ 6)结构稳定性和储锂性能的第一性原理计算. 物理学报, 2021, 70(19): 198101. doi: 10.7498/aps.70.20210521
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [5] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [8] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [9] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] 吴江滨, 张昕, 谭平恒, 冯志红, 李佳. 旋转双层石墨烯的电子结构. 物理学报, 2013, 62(15): 157302. doi: 10.7498/aps.62.157302
    [12] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [13] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [16] 袁娣, 黄多辉, 罗华峰, 王藩侯. Li, N双受主共掺杂实现p型ZnO的第一性原理研究. 物理学报, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [17] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [18] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [19] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  6743
  • PDF下载量:  1211
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-17
  • 修回日期:  2016-12-04
  • 刊出日期:  2017-03-05

/

返回文章
返回