搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析

张敏睿 贺正权 汪韬 田进寿

偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析

张敏睿, 贺正权, 汪韬, 田进寿
PDF
导出引用
导出核心图
  • 偏振双向衰减(diattenuation)是指偏振元件引入的光场传播过程中表征电矢量的两个正交偏振态的振幅变化特性. 在大部分有关偏振像差的讨论中,聚焦光场偏振态的振幅变化对其分布的影响较小而不被重视. 但在一些大相对孔径光学系统中,对于分束器、光调制器等有复杂平面介质结构的低透过率光学元件而言,引入的偏振相关的振幅调制相对大得多. 本文依据矢量平面波谱理论,建立了笛卡尔坐标系下的理想光学成像系统的矢量光学模型,验证了与德拜矢量衍射积分的一致性. 在线偏振光入射的条件下,对在汇聚光路中使用的光学元件的偏振双向衰减特性对成像质量的影响进行理论研究. 结果表明,在调制传递函数的低频率处(v 0.2NA/),这种影响是可以忽略的;随着空间频率的增加,光学元件的偏振双向衰减特性对成像系统调制传递函数的影响逐渐变大. 若要求调制传递函数的数值不低于衍射极限的90%,中频处(0.2NA/ v 0.8NA/),s光和p光的透射/反射系数之比至少需要控制在[0.63,1.6]的范围内;而当v 0.8NA/ 时,则需要控制在[0.9,1.11]的范围内. 随着光学系统光轴与光学分界面法向的倾角增加,容差范围有所放宽.
      通信作者: 张敏睿, m_rzhang@163.com
    • 基金项目: 国家自然科学基金(批准号:11274377)和财政部重大科研装备仪器项目(批准号:ZDY2011-2) 资助的课题.
    [1]

    Yu D Y, Dan H Y 2000 Engineering Optics (Beijing: China Machine Press) p176 (in Chinese) [郁道银, 淡恒英 2000 工程光学 (北京: 机械工业出版社) 第176页]

    [2]

    Richards B, Wolf E 1959 Proc R. Soc. Lon. Ser. A 253 358

    [3]

    Cooper1 I J, Royl M, Sheppard C J R 2005 Opt. Express 13 1066

    [4]

    Lindlein N, Quabis S, Peschel U, Leuchs G 2007 Opt. Express 15 5827

    [5]

    Pang W B, Cen Z F, Li X T, Qian W, Shang H B, Xu W C 2012 Acta Phys. Sin. 61 234202 (in Chinese) [庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 徐伟才 2012 物理学报 61 234202]

    [6]

    Chipman R A 1989 Proc. SPIE 861 10

    [7]

    Totzeck M, Graupner P, Heil T, Gohnermeier, Dittmann O, Krahmer D, Kamenov V, Ruoff J, Flagello D 2005 Proc. SPIE 5754 23

    [8]

    Xu X R, Huang W, Xu M F 2015 Opt. Express 23 27911

    [9]

    Xu X R, Huang W, Xu M F 2016 Opt. Express 24 4906

    [10]

    Tu Y Y, Wang X Z, Li S K, Cao Y T 2012 Opt. Lett. 37 2061

    [11]

    Shen L N, Li S K, Wang X Z, Yan G Y 2015 Acta Opt. Sin. 35 0611003 (in Chinese) [沈丽娜, 李思坤, 王向朝, 闫观勇 2015 光学学报 35 0611003]

    [12]

    Li Y H, Hao X, Shi Z Y, Shuai S J, Wang L 2015 Acta Phys. Sin. 64 154214 (in Chinese) [李旸晖, 郝翔, 史召邑, 帅少杰, 王乐 2015 物理学报 64 154214]

    [13]

    Park Y H, Cho Y C, You J W, Park C Y, Yoon H S, Lee S H, Kwon J O, Lee S W 2012 Proc. SPIE 8252 82520X

    [14]

    Park Y H, Cho Y C, You J W, Park C Y, Yoon H S, Lee S H, Kwon J O, Lee S W 2013 J. Micro Nanolithogr. MEMS MOEMS 12 023011

    [15]

    Rabinovich W S, Goetz P G, Mahon R, Swingen L, Murphy J, Ferraro M, Burris H R, Moore C I, Suite M, Gilbreath G C, Binari S 2007 Opt. Eng. 46 104001

    [16]

    Yamanishi M, Suemune I 1984 Jpn. J. Appl. Phys. 23 35

    [17]

    Guo H M, Chen J B, Zhuang S L 2006 Opt. Express 14 2095

    [18]

    Melamed T 2011 J. Opt. Soc. Am. A 28 401

    [19]

    Wood T H 1988 J. Lightwave Technol. 6 743

    [20]

    Kan Y, Nagai H, Yamanishi M, Suemune I 1988 IEEE J. Quantum Electron. 23 2167

    [21]

    Goodman 1968 Introduction to Fourier Optics (New York: McGraw-Hill) p98

    [22]

    Na B H, Ju G W, Choi H J, Cho Chul Yong, Park Y H, Park C Y, Lee Y T 2012 Opt. Express 20 19511

    [23]

    Na B H, Ju G W, Choi H J, Cho Y C, Park Y H, Lee Y T 2012 Opt. Express 20 6003

  • [1]

    Yu D Y, Dan H Y 2000 Engineering Optics (Beijing: China Machine Press) p176 (in Chinese) [郁道银, 淡恒英 2000 工程光学 (北京: 机械工业出版社) 第176页]

    [2]

    Richards B, Wolf E 1959 Proc R. Soc. Lon. Ser. A 253 358

    [3]

    Cooper1 I J, Royl M, Sheppard C J R 2005 Opt. Express 13 1066

    [4]

    Lindlein N, Quabis S, Peschel U, Leuchs G 2007 Opt. Express 15 5827

    [5]

    Pang W B, Cen Z F, Li X T, Qian W, Shang H B, Xu W C 2012 Acta Phys. Sin. 61 234202 (in Chinese) [庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 徐伟才 2012 物理学报 61 234202]

    [6]

    Chipman R A 1989 Proc. SPIE 861 10

    [7]

    Totzeck M, Graupner P, Heil T, Gohnermeier, Dittmann O, Krahmer D, Kamenov V, Ruoff J, Flagello D 2005 Proc. SPIE 5754 23

    [8]

    Xu X R, Huang W, Xu M F 2015 Opt. Express 23 27911

    [9]

    Xu X R, Huang W, Xu M F 2016 Opt. Express 24 4906

    [10]

    Tu Y Y, Wang X Z, Li S K, Cao Y T 2012 Opt. Lett. 37 2061

    [11]

    Shen L N, Li S K, Wang X Z, Yan G Y 2015 Acta Opt. Sin. 35 0611003 (in Chinese) [沈丽娜, 李思坤, 王向朝, 闫观勇 2015 光学学报 35 0611003]

    [12]

    Li Y H, Hao X, Shi Z Y, Shuai S J, Wang L 2015 Acta Phys. Sin. 64 154214 (in Chinese) [李旸晖, 郝翔, 史召邑, 帅少杰, 王乐 2015 物理学报 64 154214]

    [13]

    Park Y H, Cho Y C, You J W, Park C Y, Yoon H S, Lee S H, Kwon J O, Lee S W 2012 Proc. SPIE 8252 82520X

    [14]

    Park Y H, Cho Y C, You J W, Park C Y, Yoon H S, Lee S H, Kwon J O, Lee S W 2013 J. Micro Nanolithogr. MEMS MOEMS 12 023011

    [15]

    Rabinovich W S, Goetz P G, Mahon R, Swingen L, Murphy J, Ferraro M, Burris H R, Moore C I, Suite M, Gilbreath G C, Binari S 2007 Opt. Eng. 46 104001

    [16]

    Yamanishi M, Suemune I 1984 Jpn. J. Appl. Phys. 23 35

    [17]

    Guo H M, Chen J B, Zhuang S L 2006 Opt. Express 14 2095

    [18]

    Melamed T 2011 J. Opt. Soc. Am. A 28 401

    [19]

    Wood T H 1988 J. Lightwave Technol. 6 743

    [20]

    Kan Y, Nagai H, Yamanishi M, Suemune I 1988 IEEE J. Quantum Electron. 23 2167

    [21]

    Goodman 1968 Introduction to Fourier Optics (New York: McGraw-Hill) p98

    [22]

    Na B H, Ju G W, Choi H J, Cho Chul Yong, Park Y H, Park C Y, Lee Y T 2012 Opt. Express 20 19511

    [23]

    Na B H, Ju G W, Choi H J, Cho Y C, Park Y H, Lee Y T 2012 Opt. Express 20 6003

  • [1] 林 斌, 曹向群, 陈钰清, 戚巽骏. 基于调制传递函数的光学低通滤波器评价模型与实验研究. 物理学报, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [2] 李旸晖, 郝翔, 史召邑, 帅少杰, 王乐. 光学薄膜诱导偏振像差对大数值孔径光学系统聚焦特性的影响. 物理学报, 2015, 64(15): 154214. doi: 10.7498/aps.64.154214
    [3] 李春艳, 陆卫国, 乔琳. 快速空间测角系统中偏振像差的分析与研究. 物理学报, 2018, 67(3): 030703. doi: 10.7498/aps.67.20171702
    [4] 刘运全, 张 杰, 田进寿, 赵宝升, 吴建军, 赵 卫. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [5] 段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民. Bayer滤波型彩色相机调制传递函数测量方法. 物理学报, 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [6] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析. 物理学报, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [7] 张荣福, 王涛, 潘超, 王亮亮, 庄松林. 波前编码系统景深延拓性能研究. 物理学报, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [8] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析. 物理学报, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [9] 郑鑫, 武鹏飞, 饶瑞中. 天光背景下混浊大气中成像质量的分析方法. 物理学报, 2018, 67(8): 088701. doi: 10.7498/aps.67.20172625
    [10] 郝未倩, 梁忠诚, 刘肖尧, 赵瑞, 孔梅梅, 关建飞, 张月. 分形结构稀疏孔径阵列的成像性能. 物理学报, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [11] 张美, 李奎念, 李阳, 盛亮, 张艳红. 一种新型的液闪阵列成像屏空间分辨特性. 物理学报, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [12] 袁永腾, 郝轶聃, 侯立飞, 涂绍勇, 邓博, 胡昕, 易荣清, 曹柱荣, 江少恩, 刘慎业, 丁永坤, 缪文勇. 流体力学不稳定性增长测量方法研究. 物理学报, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [13] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定. 物理学报, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [14] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [15] 黄 菁, 梁瑞生, 司徒达, 张坤明, 唐志列. 高斯光束共焦扫描激光显微镜的光学传递函数. 物理学报, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [16] 西门纪业, 晏继文, 黄旭. 存在球差和失焦下电子光学传递函数和脉冲响应函数. 物理学报, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
    [17] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [18] 付松年, 董晖, 吴重庆, 刘海涛. 偏振模色散矢量的研究. 物理学报, 2002, 51(11): 2542-2546. doi: 10.7498/aps.51.2542
    [19] 贾维国, 杨性愉. 强双折射光纤中任意偏振方向矢量调制不稳定性. 物理学报, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
    [20] 钟东洲, 吴正茂. 电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控. 物理学报, 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
  • 引用本文:
    Citation:
计量
  • 文章访问数:  441
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-12
  • 修回日期:  2017-01-18
  • 刊出日期:  2017-04-20

偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析

  • 1. 中国科学院西安光学精密机械研究所, 西安 710119;
  • 2. 中国科学院大学, 北京 100049
  • 通信作者: 张敏睿, m_rzhang@163.com
    基金项目: 

    国家自然科学基金(批准号:11274377)和财政部重大科研装备仪器项目(批准号:ZDY2011-2) 资助的课题.

摘要: 偏振双向衰减(diattenuation)是指偏振元件引入的光场传播过程中表征电矢量的两个正交偏振态的振幅变化特性. 在大部分有关偏振像差的讨论中,聚焦光场偏振态的振幅变化对其分布的影响较小而不被重视. 但在一些大相对孔径光学系统中,对于分束器、光调制器等有复杂平面介质结构的低透过率光学元件而言,引入的偏振相关的振幅调制相对大得多. 本文依据矢量平面波谱理论,建立了笛卡尔坐标系下的理想光学成像系统的矢量光学模型,验证了与德拜矢量衍射积分的一致性. 在线偏振光入射的条件下,对在汇聚光路中使用的光学元件的偏振双向衰减特性对成像质量的影响进行理论研究. 结果表明,在调制传递函数的低频率处(v 0.2NA/),这种影响是可以忽略的;随着空间频率的增加,光学元件的偏振双向衰减特性对成像系统调制传递函数的影响逐渐变大. 若要求调制传递函数的数值不低于衍射极限的90%,中频处(0.2NA/ v 0.8NA/),s光和p光的透射/反射系数之比至少需要控制在[0.63,1.6]的范围内;而当v 0.8NA/ 时,则需要控制在[0.9,1.11]的范围内. 随着光学系统光轴与光学分界面法向的倾角增加,容差范围有所放宽.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回