搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究

危阳 马新国 祝林 贺华 黄楚云

二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究

危阳, 马新国, 祝林, 贺华, 黄楚云
PDF
导出引用
导出核心图
  • 采用基于色散修正的平面波超软赝势方法研究了二硫化钼/石墨烯异质结的界面结合作用及其对电荷分布和带边电位的影响. 研究表明二硫化钼与石墨烯之间可以形成范德瓦耳斯力结合的稳定堆叠结构. 通过能带结构计算,发现二硫化钼与石墨烯的耦合导致二硫化钼成为n型半导体,石墨烯转变成小带隙的p型体系. 并通过电子密度差分图证实了界面内二硫化钼附近聚集负电荷,石墨烯附近聚集正电荷,界面内形成的内建电场可以抑制光生电子-空穴对的复合. 石墨烯的引入可以调制二硫化钼的能带,使其导带底上移至-0.31 eV,提高了光生电子还原能力,有利于光催化还原反应.
      通信作者: 马新国, maxg2013@sohu.com;chuyunh@163.com ; 黄楚云, maxg2013@sohu.com;chuyunh@163.com
    • 基金项目: 国家自然科学基金(批准号:51472081)、湖北工业大学高层次人才启动基金(批准号:GCRC13014)、绿色工业引领计划(批准号:YXQN2016005)和湖北省协同创新中心开放基金(批准号:HBSKFZD2015004)资助的课题.
    [1]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296

    [2]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664

    [3]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311

    [4]

    Patil S, Harle A, Sathaye S, Patil K 2014 Cryst. Eng. Comm. 16 10845

    [5]

    Nrskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Electrochem. Soc. 152 J23

    [6]

    Karunadasa H I, Montalvo E, Sun Y J, Majda M, Long J R, Chang C J 2012 Science 335 698

    [7]

    Garrett B R, Polen S M, Click K A, He M F, Huang Z J, Hadad C M, Wu Y Y 2016 Inorg. Chem. 55 3960

    [8]

    Cheah A J, Chiu W S, Khiew P S, Nakajima H, Saisopa T, Songsiriritthigul P, Radiman S, Hamid M A A 2015 Catal. Sci. Technol. 5 4133

    [9]

    Weng B, Zhang X, Zhang N, Tang Z R, Xu Y J 2015 Langmuir 31 4314

    [10]

    Chen Y J, Tian G H, Shi Y H, Xiao Y T, Fu H G 2015 Appl. Catal. B: Environ. 164 40

    [11]

    Meng F, Li J, Cushing S K, Zhi M, Wu N 2013 J. Am. Chem. Soc. 135 10286

    [12]

    Zhao M, Chang M J, Wang Q, Zhu Z T, Zhai X P, Zirak M, Moshfegh A Z, Song Y L, Zhang H L 2015 Chem. Commun. 51 12262

    [13]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924

    [14]

    Fu Y S, Wang X 2011 Ind. Eng. Chem. Res. 50 7210

    [15]

    Yun H N, Iwase A, Kudo A, Amal R 2010 J. Phys. Chem. Lett. 1 2607

    [16]

    Xu T G, Zhang L W, Cheng H Y, Zhu Y F 2011 Appl. Catal. B: Environ. 101 382

    [17]

    Li H L, Yu K, Li C, Tang Z, Guo B J, Lei X, Fu H, Zhu Z Q 2015 Sci. Rep. 5 18730

    [18]

    Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H 2014 ACS Nano 8 7078

    [19]

    Kumar N A, Dar M A, Gul R, Baek J B 2015 Mater. Today 18 286

    [20]

    Min S X, Lu G X 2012 J. Phys. Chem. C 116 25415

    [21]

    Carraro F, Calvillo L, Cattelan M, Favaro M, Righetto M, Nappini S, P I, Celorrio V, Fermn D J, Martucci A, Agnoli S, Granozzi G 2015 ACS Appl. Mater. Interfaces 7 25685

    [22]

    Deng Z H, Li L, Ding W, Xiong K, Wei Z D 2015 Chem. Commun. 51 1893

    [23]

    Jaramillo T F, Jrgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I B 2007 Science 317 100

    [24]

    Jin C J, Rasmussen F A, Thygesen K S 2016 J. Phys. Chem. C 120 1352

    [25]

    Aziza Z B, Henck H, Felice D D, Pierucci D, Chaste J, Naylor C H, Balan A, Dappe Y J, Johnson A T C, Ouerghi A 2016 Carbon 110 396

    [26]

    Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [28]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [29]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [30]

    Ortmann F, Bechstedt F, Schmidt W G 2006 Phys. Rev. B 73 205101

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys: Condens. Matter 14 2717

    [33]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [34]

    Jiang J W 2015 Front. Phys. 10 287

    [35]

    Pierucci D, Henck H, Avila J, Balan A, Naylor C H, Patriarche G, Dappe Y J, Silly M G, Sirotti F, Johnson A T, Asensio M C, Ouerqhi A 2016 Nano Lett. 16 4054

    [36]

    Zhu J D, Zhang J C, Hao Y 2016 Jpn. J. Appl. Phys. 55 080306

    [37]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883

    [38]

    Liu J J 2015 J. Phys. Chem. C 119 28417

    [39]

    Low J X, Cao S W, Yu J G, Wageh S 2014 Chem. Commun. 50 10768

    [40]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [41]

    Huang Z Y, He C Y, Qi X, Yang H, Liu W L, Wei X L, Peng X Y, Zhong J X 2014 J. Phys. D: Appl. Phys. 47 75301

    [42]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Gaghavan S, Ghosh A 2013 Nat. Nanotechnol. 8 826

    [43]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271

    [44]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J Q, Park J Y 2013 Appl. Phys. Lett. 103 171604

    [45]

    Xu Y, Schoonen M A A 2000 Am. Mineral. 85 543

    [46]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 16963

  • [1]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296

    [2]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664

    [3]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311

    [4]

    Patil S, Harle A, Sathaye S, Patil K 2014 Cryst. Eng. Comm. 16 10845

    [5]

    Nrskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Electrochem. Soc. 152 J23

    [6]

    Karunadasa H I, Montalvo E, Sun Y J, Majda M, Long J R, Chang C J 2012 Science 335 698

    [7]

    Garrett B R, Polen S M, Click K A, He M F, Huang Z J, Hadad C M, Wu Y Y 2016 Inorg. Chem. 55 3960

    [8]

    Cheah A J, Chiu W S, Khiew P S, Nakajima H, Saisopa T, Songsiriritthigul P, Radiman S, Hamid M A A 2015 Catal. Sci. Technol. 5 4133

    [9]

    Weng B, Zhang X, Zhang N, Tang Z R, Xu Y J 2015 Langmuir 31 4314

    [10]

    Chen Y J, Tian G H, Shi Y H, Xiao Y T, Fu H G 2015 Appl. Catal. B: Environ. 164 40

    [11]

    Meng F, Li J, Cushing S K, Zhi M, Wu N 2013 J. Am. Chem. Soc. 135 10286

    [12]

    Zhao M, Chang M J, Wang Q, Zhu Z T, Zhai X P, Zirak M, Moshfegh A Z, Song Y L, Zhang H L 2015 Chem. Commun. 51 12262

    [13]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924

    [14]

    Fu Y S, Wang X 2011 Ind. Eng. Chem. Res. 50 7210

    [15]

    Yun H N, Iwase A, Kudo A, Amal R 2010 J. Phys. Chem. Lett. 1 2607

    [16]

    Xu T G, Zhang L W, Cheng H Y, Zhu Y F 2011 Appl. Catal. B: Environ. 101 382

    [17]

    Li H L, Yu K, Li C, Tang Z, Guo B J, Lei X, Fu H, Zhu Z Q 2015 Sci. Rep. 5 18730

    [18]

    Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H 2014 ACS Nano 8 7078

    [19]

    Kumar N A, Dar M A, Gul R, Baek J B 2015 Mater. Today 18 286

    [20]

    Min S X, Lu G X 2012 J. Phys. Chem. C 116 25415

    [21]

    Carraro F, Calvillo L, Cattelan M, Favaro M, Righetto M, Nappini S, P I, Celorrio V, Fermn D J, Martucci A, Agnoli S, Granozzi G 2015 ACS Appl. Mater. Interfaces 7 25685

    [22]

    Deng Z H, Li L, Ding W, Xiong K, Wei Z D 2015 Chem. Commun. 51 1893

    [23]

    Jaramillo T F, Jrgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I B 2007 Science 317 100

    [24]

    Jin C J, Rasmussen F A, Thygesen K S 2016 J. Phys. Chem. C 120 1352

    [25]

    Aziza Z B, Henck H, Felice D D, Pierucci D, Chaste J, Naylor C H, Balan A, Dappe Y J, Johnson A T C, Ouerghi A 2016 Carbon 110 396

    [26]

    Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [28]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [29]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [30]

    Ortmann F, Bechstedt F, Schmidt W G 2006 Phys. Rev. B 73 205101

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys: Condens. Matter 14 2717

    [33]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [34]

    Jiang J W 2015 Front. Phys. 10 287

    [35]

    Pierucci D, Henck H, Avila J, Balan A, Naylor C H, Patriarche G, Dappe Y J, Silly M G, Sirotti F, Johnson A T, Asensio M C, Ouerqhi A 2016 Nano Lett. 16 4054

    [36]

    Zhu J D, Zhang J C, Hao Y 2016 Jpn. J. Appl. Phys. 55 080306

    [37]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883

    [38]

    Liu J J 2015 J. Phys. Chem. C 119 28417

    [39]

    Low J X, Cao S W, Yu J G, Wageh S 2014 Chem. Commun. 50 10768

    [40]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [41]

    Huang Z Y, He C Y, Qi X, Yang H, Liu W L, Wei X L, Peng X Y, Zhong J X 2014 J. Phys. D: Appl. Phys. 47 75301

    [42]

    Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Gaghavan S, Ghosh A 2013 Nat. Nanotechnol. 8 826

    [43]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271

    [44]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J Q, Park J Y 2013 Appl. Phys. Lett. 103 171604

    [45]

    Xu Y, Schoonen M A A 2000 Am. Mineral. 85 543

    [46]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 16963

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2226
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-15
  • 修回日期:  2017-01-21
  • 刊出日期:  2017-04-05

二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究

    基金项目: 

    国家自然科学基金(批准号:51472081)、湖北工业大学高层次人才启动基金(批准号:GCRC13014)、绿色工业引领计划(批准号:YXQN2016005)和湖北省协同创新中心开放基金(批准号:HBSKFZD2015004)资助的课题.

摘要: 采用基于色散修正的平面波超软赝势方法研究了二硫化钼/石墨烯异质结的界面结合作用及其对电荷分布和带边电位的影响. 研究表明二硫化钼与石墨烯之间可以形成范德瓦耳斯力结合的稳定堆叠结构. 通过能带结构计算,发现二硫化钼与石墨烯的耦合导致二硫化钼成为n型半导体,石墨烯转变成小带隙的p型体系. 并通过电子密度差分图证实了界面内二硫化钼附近聚集负电荷,石墨烯附近聚集正电荷,界面内形成的内建电场可以抑制光生电子-空穴对的复合. 石墨烯的引入可以调制二硫化钼的能带,使其导带底上移至-0.31 eV,提高了光生电子还原能力,有利于光催化还原反应.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回