搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au的金属颗粒对二硫化钼发光增强

魏晓旭 程英 霍达 张宇涵 王军转 胡勇 施毅

Au的金属颗粒对二硫化钼发光增强

魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅
PDF
导出引用
导出核心图
  • 二硫化钼(MoS2)是一种层状的二维过渡金属硫族化合物材料,从块体到单层,禁带由间接带隙变为直接带隙,由于通常机械剥落的单层MoS2是n型掺杂的,使得其发光效率仍然很低. 在本文中,采用匀胶机旋涂的方法将共振吸收峰在514 nm附近的纳米金颗粒尽可能均匀的铺在单层、双层以及多层的MoS2样品表面,发现单层和双层样品的光致发光谱(PL谱)分别增强了约30倍和2倍同时伴随着峰位的蓝移,而多层样品的发光强度也略有增强. 拉曼特性揭示了纳米金颗粒对单层和双层MoS2样品产生了明显的p型掺杂,从而增强了发光;同时纳米金颗粒的表面等离子激元效应对激发光的天线作用也是增强MoS2的光致发光的一个因素.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB932900)、国家自然科学青年基金(批准号:61204050)和江苏省自然科学青年基金(批准号:BK2011435)资助的课题.
    [1]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [2]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2011 ACS Nano 6 74

    [3]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris Ph, Steiner M 2013 Nano Lett. 13 1416

    [4]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815

    [5]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201

    [6]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [7]

    Liu Y L, Nan H Y, Wu X, Pan W, Wang W H, Bai J, Zhao W W, Sun L T, Wang X R, Ni Z H 2013 ACS Nano 7 4202

    [8]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [9]

    Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [10]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [11]

    Dolui K, Rungger I, Sanvito S 2013 Phys. Rev. B 87 165402

    [12]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642

    [13]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [14]

    Mak K F, He K L, Lee C, Lee G H, Hone J, Tony F. Heinz, Shan J 2013 Nat. Mater. 12 207

    [15]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474

    [16]

    Mouri C H, Miyauchi Y, Matsuda K 2013 Nano Lett. 13 5944

    [17]

    Shi Y M, Huang J K, Jin L M, Hsu Y T, Yu S F, Li L J, Yang H Y 2013 Sci. Rep. 3 1389

    [18]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [19]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [20]

    Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J, Grossman J C, Wu J Q 2013 Nano Lett. 13 2831

    [21]

    Li H, Zhang Q, Yap C C R, Tay B K, Hong T, Edwin T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

    [22]

    Chakraborty B, Bera A, Muthu D V S, Bhowmick S, Waghmare U V, Sood A K 2012 Phys. Rev. B 85 161403

    [23]

    Sreeprasad T S, Nguyen P, Kim N, Berry V 2013 Nano Lett. 13 4434

    [24]

    Lanzillo A L, Birdwell A G, Amani M, Crowne F J, Shah P B, Najmaei S, Liu Z, Ajayan P M, Lou J, Dubey M, Nayak S K, O'Regan T P 2013 Appl. Phys. Lett. 103 093102

    [25]

    Najmaei S, Liu Z, Ajayan P M, Lou J 2012 Appl. Phys. Lett. 100 013106

  • [1]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [2]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2011 ACS Nano 6 74

    [3]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris Ph, Steiner M 2013 Nano Lett. 13 1416

    [4]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815

    [5]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201

    [6]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [7]

    Liu Y L, Nan H Y, Wu X, Pan W, Wang W H, Bai J, Zhao W W, Sun L T, Wang X R, Ni Z H 2013 ACS Nano 7 4202

    [8]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [9]

    Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [10]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [11]

    Dolui K, Rungger I, Sanvito S 2013 Phys. Rev. B 87 165402

    [12]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642

    [13]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [14]

    Mak K F, He K L, Lee C, Lee G H, Hone J, Tony F. Heinz, Shan J 2013 Nat. Mater. 12 207

    [15]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474

    [16]

    Mouri C H, Miyauchi Y, Matsuda K 2013 Nano Lett. 13 5944

    [17]

    Shi Y M, Huang J K, Jin L M, Hsu Y T, Yu S F, Li L J, Yang H Y 2013 Sci. Rep. 3 1389

    [18]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [19]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [20]

    Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J, Grossman J C, Wu J Q 2013 Nano Lett. 13 2831

    [21]

    Li H, Zhang Q, Yap C C R, Tay B K, Hong T, Edwin T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

    [22]

    Chakraborty B, Bera A, Muthu D V S, Bhowmick S, Waghmare U V, Sood A K 2012 Phys. Rev. B 85 161403

    [23]

    Sreeprasad T S, Nguyen P, Kim N, Berry V 2013 Nano Lett. 13 4434

    [24]

    Lanzillo A L, Birdwell A G, Amani M, Crowne F J, Shah P B, Najmaei S, Liu Z, Ajayan P M, Lou J, Dubey M, Nayak S K, O'Regan T P 2013 Appl. Phys. Lett. 103 093102

    [25]

    Najmaei S, Liu Z, Ajayan P M, Lou J 2012 Appl. Phys. Lett. 100 013106

  • [1] 周小东, 张少锋, 周思华. Au纳米颗粒和CdTe量子点复合体系发光增强和猝灭效应. 物理学报, 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [2] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应. 物理学报, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [3] 陈峻, 范广涵, 张运炎. 选择性p型量子阱垒层掺杂在双波长发光二极管光谱调控中的作用. 物理学报, 2012, 61(8): 088502. doi: 10.7498/aps.61.088502
    [4] 李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可. Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能. 物理学报, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [5] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征. 物理学报, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [6] 刘春明, 方丽梅, 祖小涛. 钴掺杂二氧化锡纳米粉的光致发光和磁学性质. 物理学报, 2009, 58(2): 936-940. doi: 10.7498/aps.58.936
    [7] 范志东, 周子淳, 刘绰, 马蕾, 彭英才. Eu掺杂Si纳米线的光致发光特性. 物理学报, 2015, 64(14): 148103. doi: 10.7498/aps.64.148103
    [8] 邓 宏, 韦 敏, 陈金菊, 郝 昕, 税正伟, 唐 斌. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [9] 肖芝燕, 张伟力, 高 红, 王玉玺, 张喜田, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [10] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [11] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [12] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [13] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究 . 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [15] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [16] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [17] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [18] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [19] 秦国刚, 尤力平, 王印月, 马书懿. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
    [20] 刘方舒, 吴定才, 胡志刚, 段满益, 徐禄祥, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1210
  • PDF下载量:  1996
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-05
  • 修回日期:  2014-06-26
  • 刊出日期:  2014-11-05

Au的金属颗粒对二硫化钼发光增强

  • 1. 南京大学电子科学与工程学院, 南京 210093;
  • 2. 南京大学材料科学与工程系, 南京 210093
    基金项目: 

    国家重点基础研究发展计划(批准号:2013CB932900)、国家自然科学青年基金(批准号:61204050)和江苏省自然科学青年基金(批准号:BK2011435)资助的课题.

摘要: 二硫化钼(MoS2)是一种层状的二维过渡金属硫族化合物材料,从块体到单层,禁带由间接带隙变为直接带隙,由于通常机械剥落的单层MoS2是n型掺杂的,使得其发光效率仍然很低. 在本文中,采用匀胶机旋涂的方法将共振吸收峰在514 nm附近的纳米金颗粒尽可能均匀的铺在单层、双层以及多层的MoS2样品表面,发现单层和双层样品的光致发光谱(PL谱)分别增强了约30倍和2倍同时伴随着峰位的蓝移,而多层样品的发光强度也略有增强. 拉曼特性揭示了纳米金颗粒对单层和双层MoS2样品产生了明显的p型掺杂,从而增强了发光;同时纳米金颗粒的表面等离子激元效应对激发光的天线作用也是增强MoS2的光致发光的一个因素.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回