搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ni电极和ZrO2/SiO2/ZrO2介质的MIM电容的导电机理研究

刘骐萱 王永平 刘文军 丁士进

基于Ni电极和ZrO2/SiO2/ZrO2介质的MIM电容的导电机理研究

刘骐萱, 王永平, 刘文军, 丁士进
PDF
导出引用
导出核心图
  • 研究了基于Ni电极和原子层淀积的ZrO2/SiO2/ZrO2对称叠层介质金属-绝缘体-金属(MIM)电容的电学性能. 当叠层介质的厚度固定在14 nm时,随着SiO2层厚度从0增加到2 nm,所得电容密度从13.1 fF/m2逐渐减小到9.3 fF/m2,耗散因子从0.025逐渐减小到0.02. 比较MIM电容的电流-电压(I-V)曲线,发现在高压下电流密度随着SiO2厚度的增加而减小,在低压下电流密度的变化不明显,还观察到电容在正、负偏压下表现出完全不同的导电特性,在正偏压下表现出不同的高、低场I-V特性,而在负偏压下则以单一的I-V特性为主导. 进一步对该电容在高、低场下以及电子顶部和底部注入时的导电机理进行了研究. 结果表明,当电子从底部注入时,在高场和低场下分别表现出普尔-法兰克(PF)发射和陷阱辅助隧穿(TAT)的导电机理;当电子从顶部注入时,在高、低场下均表现出TAT导电机理. 主要原因在于底电极Ni与ZrO2之间存在镍的氧化层(NiOx),且ZrO2介质层中含有深浅两种能级陷阱(分别为0.9和2.3 eV),当电子注入的模式和外电场不同时,不同能级的陷阱对电子的传导产生作用.
      通信作者: 丁士进, sjding@fudan.edu.cn
    • 基金项目: 国家02科技重大专项(批准号:2015ZX02102-003)资助的课题.
    [1]

    Sung H K, Wang C, Kim N Y 2015 Mat. Sci. Semicon Proc. 40 516

    [2]

    Mangla O, Gupta V 2016 J. Mater Sci. 27 12537

    [3]

    Dugu S, Pavunny S P, Scott J F, Katiyar R S 2016 Appl. Phys. Lett. 109 212901

    [4]

    Chiang K C, Huang C C, Chen G L, Chen W J, Kao H L, Wu Y H, Chin A, McAlister S P 2006 IEEE Trans. Electron Devices 53 2312

    [5]

    Wu Y H, Lin C C, Hu Y C, Wu M L, Wu J R, Chen L L 2003 IEEE Electron Device Lett. 32 1107

    [6]

    Ding S J, Huang Y J, Huang Y, Pan S H, Zhang W, Wang L K 2007 Chin. Phys. 16 2803

    [7]

    Xu J, Huang J Y, Ding S J, Zhang W 2008 Acta Phys. Sin. 58 3433 (in Chinese) [许军, 黄建宇, 丁士进, 张卫 2008 物理学报 58 3433]

    [8]

    Huang J Y, Huang Y, Ding S J, Zhang W, Liu R 2007 Chin. Phys. Lett. 24 2492

    [9]

    Wang C, Zhuang D M, Zhang G, Wu M S 2003 Chin. J. Mater. Res. 17 332 (in Chinese) [王超, 庄大明, 张弓, 吴敏生 2003 材料研究学报 17 332]

    [10]

    Monaghan S, Cherkaoui K, Djara K, Hurley P K, Oberbeck L, Tois E, Wilde L, Teichert S 2009 IEEE Electron Device Lett. 30 219

    [11]

    Bertaud T, Blonkowski S, Bermond C, Vallee C, Gonon P, Jean M G, Flechet B 2010 IEEE Electron Device Lett. 31 114

    [12]

    Wu Y H, Lin C C, Chen L L, Hu Y C, Wu J R, Wu M L 2011 Appl. Phys. Lett. 98 013506

    [13]

    Lutzer B, Simsek S, Zimmermann C, Pollach M S, Bethge O, Bertagnoli E 2016 J. Appl. Phys. 119 125304

    [14]

    Zhu B, Liu W J, Wei L, Ding S J 2016 J. Phys. D 49 135106

    [15]

    Zhang Q X, Zhu B, Ding S J, Lu H L, Sun Q Q, Zhou P, Zhang W 2014 IEEE Electron Device Lett. 35 1121

    [16]

    Phung T H, Srinivasan D K, Steinmann P, Wise R, Yu M B, Yeo Y C, Zhu C 2011 J. Electrochem. Soc. 158 1289

    [17]

    Kim S J, Cho B J, Li M F, Ding S J, Zhu C, Yu M B, Narayanan B, Chin A, Kwong D L 2004 IEEE Electron Device Lett. 25 538

    [18]

    Chen J D, Yang J J, Yu M B, Zhu C, Yeo Y C 2009 IEEE Electron Device Lett. 56 2683

    [19]

    Htoa M K, Mahata C, Mallik S, Sarkar C K, Maiti C K 2011 J. Electrochem. Soc. 158 45

    [20]

    Chiang K C, Chen C H, Pan H C, Hsiao C N, Chou C P, Chin A, Hwang H L 2007 IEEE Electron Device Lett. 28 235

    [21]

    Ding S J, Huang Y J, Li Y B, Zhang D W, Zhu C, Li M F 2006 J. Vac. Sci. Technol. B 24 2518

    [22]

    Pan S H, Ding S J, Huang Y, Huang Y J, Zhang W, Wang L K, Liu R 2007 J. Appl. Phys. 102 073706

    [23]

    Mojarad S A, Kwa K S K, Goss J P, Zhou Z, Ponon N K, Appleby D J R, AI-Hamadany R S, Oneil A 2012 J. Appl. Phys. 111 014503

    [24]

    Molina J, Thamankar R, Pey K L 2016 Phys. Status Solidi A 14 154

    [25]

    Ding S J, Xu J, Huang Y, Sun Q Q 2008 Appl. Phys. Lett. 93 092902

    [26]

    Lee S Y, Kim H, Mcintyre P C, Saraswat K C, Byun J S 2003 Appl. Phys. Lett. 82 2874

    [27]

    Knebel S, Schroeder U, Zhou D, Mikolajick T, Krautheim G 2014 IEEE Trans. Device Mater. Rel. 14 154

    [28]

    Paskaleva A, Weinreich W, Bauer A J, Lemberger M, Frey L 2015 Mat. Sci. Semicon. Proc. 29 124

    [29]

    Padmanabhan R, Bhat N, Mohan S 2013 IEEE Electron Device Lett. 60 1523

    [30]

    Weinreich W, Shariq A, Seidel K, Sundqvist J, Paskaleva A, Lemberger M, Bauer A J 2013 J. Vac. Sci. Technol. B 31 01A109

    [31]

    Zhou D Y, Schroeder U, Xu J 2010 J. Appl. Phys. 108 124104

    [32]

    Jogi I, Kukli K, Ritala M, Leskela M, Aarik J, Aidla A, Lu J 2010 Microelectron Eng. 87 144

    [33]

    Zhu B, Liu W J, Wei L, Zhang W, Jiang A Q, Ding S J 2015 J. Appl. Phys. 118 014501

    [34]

    Srivastava A, Mangla O, Gupta V 2015 IEEE Trans. Nanotechnol. 14 612

    [35]

    Ding S J, Zhu C X, Li M F, Zhang D W 2005 Appl. Phys. Lett. 87 053501

    [36]

    Mondal S, Pan T M 2011 IEEE Electron Device Lett. 32 1576

    [37]

    Tsai C Y, Chiang K C, Lin S H, Hsu K C, Chi C C, Chin A 2010 IEEE Electron Device Lett. 31 749

    [38]

    Zhao X Y, Vanderbilt D 2001 Phys. Rev. B 65 075105

    [39]

    Ramanathan S, Park C M, Mclntyre P C 2002 J. Appl. Phys. 91 4521

    [40]

    Hur J H, Park S J, Chung U I 2012 J. Appl. Phys. 112 113719

    [41]

    Svensson C, Lundstorm I 1973 J. Appl. Phys. 44 4657

    [42]

    Houssa M, Tuominen M, Naili M, Afanasev V, Stesmans A, Haukka S, Henyns M M 2000 J. Appl. Phys. 87 8615

    [43]

    Vuong T H, Radnik J, Kondratenko E, Schneider M, Armbruster U, Bruckner A 2016 Appl. Catal. B 197 159

    [44]

    Peck M A, Langell M A 2012 Chem. Mater. 24 4483

    [45]

    Goto Y, Taniguchi K, Omata T, Otsukayaomatsuo S 2008 Chem. Mater. 20 4156

  • [1]

    Sung H K, Wang C, Kim N Y 2015 Mat. Sci. Semicon Proc. 40 516

    [2]

    Mangla O, Gupta V 2016 J. Mater Sci. 27 12537

    [3]

    Dugu S, Pavunny S P, Scott J F, Katiyar R S 2016 Appl. Phys. Lett. 109 212901

    [4]

    Chiang K C, Huang C C, Chen G L, Chen W J, Kao H L, Wu Y H, Chin A, McAlister S P 2006 IEEE Trans. Electron Devices 53 2312

    [5]

    Wu Y H, Lin C C, Hu Y C, Wu M L, Wu J R, Chen L L 2003 IEEE Electron Device Lett. 32 1107

    [6]

    Ding S J, Huang Y J, Huang Y, Pan S H, Zhang W, Wang L K 2007 Chin. Phys. 16 2803

    [7]

    Xu J, Huang J Y, Ding S J, Zhang W 2008 Acta Phys. Sin. 58 3433 (in Chinese) [许军, 黄建宇, 丁士进, 张卫 2008 物理学报 58 3433]

    [8]

    Huang J Y, Huang Y, Ding S J, Zhang W, Liu R 2007 Chin. Phys. Lett. 24 2492

    [9]

    Wang C, Zhuang D M, Zhang G, Wu M S 2003 Chin. J. Mater. Res. 17 332 (in Chinese) [王超, 庄大明, 张弓, 吴敏生 2003 材料研究学报 17 332]

    [10]

    Monaghan S, Cherkaoui K, Djara K, Hurley P K, Oberbeck L, Tois E, Wilde L, Teichert S 2009 IEEE Electron Device Lett. 30 219

    [11]

    Bertaud T, Blonkowski S, Bermond C, Vallee C, Gonon P, Jean M G, Flechet B 2010 IEEE Electron Device Lett. 31 114

    [12]

    Wu Y H, Lin C C, Chen L L, Hu Y C, Wu J R, Wu M L 2011 Appl. Phys. Lett. 98 013506

    [13]

    Lutzer B, Simsek S, Zimmermann C, Pollach M S, Bethge O, Bertagnoli E 2016 J. Appl. Phys. 119 125304

    [14]

    Zhu B, Liu W J, Wei L, Ding S J 2016 J. Phys. D 49 135106

    [15]

    Zhang Q X, Zhu B, Ding S J, Lu H L, Sun Q Q, Zhou P, Zhang W 2014 IEEE Electron Device Lett. 35 1121

    [16]

    Phung T H, Srinivasan D K, Steinmann P, Wise R, Yu M B, Yeo Y C, Zhu C 2011 J. Electrochem. Soc. 158 1289

    [17]

    Kim S J, Cho B J, Li M F, Ding S J, Zhu C, Yu M B, Narayanan B, Chin A, Kwong D L 2004 IEEE Electron Device Lett. 25 538

    [18]

    Chen J D, Yang J J, Yu M B, Zhu C, Yeo Y C 2009 IEEE Electron Device Lett. 56 2683

    [19]

    Htoa M K, Mahata C, Mallik S, Sarkar C K, Maiti C K 2011 J. Electrochem. Soc. 158 45

    [20]

    Chiang K C, Chen C H, Pan H C, Hsiao C N, Chou C P, Chin A, Hwang H L 2007 IEEE Electron Device Lett. 28 235

    [21]

    Ding S J, Huang Y J, Li Y B, Zhang D W, Zhu C, Li M F 2006 J. Vac. Sci. Technol. B 24 2518

    [22]

    Pan S H, Ding S J, Huang Y, Huang Y J, Zhang W, Wang L K, Liu R 2007 J. Appl. Phys. 102 073706

    [23]

    Mojarad S A, Kwa K S K, Goss J P, Zhou Z, Ponon N K, Appleby D J R, AI-Hamadany R S, Oneil A 2012 J. Appl. Phys. 111 014503

    [24]

    Molina J, Thamankar R, Pey K L 2016 Phys. Status Solidi A 14 154

    [25]

    Ding S J, Xu J, Huang Y, Sun Q Q 2008 Appl. Phys. Lett. 93 092902

    [26]

    Lee S Y, Kim H, Mcintyre P C, Saraswat K C, Byun J S 2003 Appl. Phys. Lett. 82 2874

    [27]

    Knebel S, Schroeder U, Zhou D, Mikolajick T, Krautheim G 2014 IEEE Trans. Device Mater. Rel. 14 154

    [28]

    Paskaleva A, Weinreich W, Bauer A J, Lemberger M, Frey L 2015 Mat. Sci. Semicon. Proc. 29 124

    [29]

    Padmanabhan R, Bhat N, Mohan S 2013 IEEE Electron Device Lett. 60 1523

    [30]

    Weinreich W, Shariq A, Seidel K, Sundqvist J, Paskaleva A, Lemberger M, Bauer A J 2013 J. Vac. Sci. Technol. B 31 01A109

    [31]

    Zhou D Y, Schroeder U, Xu J 2010 J. Appl. Phys. 108 124104

    [32]

    Jogi I, Kukli K, Ritala M, Leskela M, Aarik J, Aidla A, Lu J 2010 Microelectron Eng. 87 144

    [33]

    Zhu B, Liu W J, Wei L, Zhang W, Jiang A Q, Ding S J 2015 J. Appl. Phys. 118 014501

    [34]

    Srivastava A, Mangla O, Gupta V 2015 IEEE Trans. Nanotechnol. 14 612

    [35]

    Ding S J, Zhu C X, Li M F, Zhang D W 2005 Appl. Phys. Lett. 87 053501

    [36]

    Mondal S, Pan T M 2011 IEEE Electron Device Lett. 32 1576

    [37]

    Tsai C Y, Chiang K C, Lin S H, Hsu K C, Chi C C, Chin A 2010 IEEE Electron Device Lett. 31 749

    [38]

    Zhao X Y, Vanderbilt D 2001 Phys. Rev. B 65 075105

    [39]

    Ramanathan S, Park C M, Mclntyre P C 2002 J. Appl. Phys. 91 4521

    [40]

    Hur J H, Park S J, Chung U I 2012 J. Appl. Phys. 112 113719

    [41]

    Svensson C, Lundstorm I 1973 J. Appl. Phys. 44 4657

    [42]

    Houssa M, Tuominen M, Naili M, Afanasev V, Stesmans A, Haukka S, Henyns M M 2000 J. Appl. Phys. 87 8615

    [43]

    Vuong T H, Radnik J, Kondratenko E, Schneider M, Armbruster U, Bruckner A 2016 Appl. Catal. B 197 159

    [44]

    Peck M A, Langell M A 2012 Chem. Mater. 24 4483

    [45]

    Goto Y, Taniguchi K, Omata T, Otsukayaomatsuo S 2008 Chem. Mater. 20 4156

  • [1] 崔平, 沈容, 路阳, 纪爱玲, 孙刚, 陆坤权, 王学昭. 极性分子型电流变液导电机理研究. 物理学报, 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [2] 李 鹏, 刘顺华, 陈光昀. 二次渗滤现象对镍基导电硅橡胶屏蔽性能的影响. 物理学报, 2005, 54(7): 3332-3336. doi: 10.7498/aps.54.3332
    [3] 薛将, 潘风明, 裴煜. 钽掺杂二氧化钛薄膜的光电性能研究. 物理学报, 2013, 62(15): 158103. doi: 10.7498/aps.62.158103
    [4] 李盛涛, 成鹏飞, 杨雁, 张乐. ZnO压敏陶瓷电导研究的新方法. 物理学报, 2009, 58(4): 2543-2548. doi: 10.7498/aps.58.2543
    [5] 罗明海, 徐马记, 黄其伟, 李派, 何云斌. VO2金属-绝缘体相变机理的研究进展. 物理学报, 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [6] 王国梅, 恽怀顺, 江冰, 李兴丹, 吴代华, 杨生荣. Ni离子注入多晶ZrO2的表面电性能和结构. 物理学报, 1996, 45(7): 1160-1167. doi: 10.7498/aps.45.1160
    [7] 赵勇, 诸葛向彬, 何业冶. Y1-xCaxBa2Cu3O6系统中空穴掺杂诱导的绝缘体-金属转变和超导电性. 物理学报, 1992, 41(7): 1151-1156. doi: 10.7498/aps.41.1151
    [8] 杨永宏, 邢定钰, 龚昌德. YBa2Cu3O7-x的金属-绝缘体转变. 物理学报, 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
    [9] 刘坤, 褚君浩, 陈诗伟, 赵军, 汤定元. 金属-绝缘体-半导体器件红外探测机理研究. 物理学报, 1995, 44(7): 1137-1140. doi: 10.7498/aps.44.1137
    [10] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理. 物理学报, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [11] 王茂祥, 俞建华, 孙承休, 吴宗汉. 金属-绝缘体-半导体(Au-SiO2-Si)隧道结的负阻现象与发光特性. 物理学报, 2000, 49(6): 1159-1162. doi: 10.7498/aps.49.1159
    [12] 邱梅清, 方明虎. Eu2-xPbxRu2O7中的金属-绝缘体相变和自旋玻璃态行为. 物理学报, 2006, 55(9): 4912-4917. doi: 10.7498/aps.55.4912
    [13] 范正修, 邵建达, 邵淑英. ZrO2/SiO2多层膜中膜厚组合周期数及基底材料对残余应力的影响. 物理学报, 2005, 54(7): 3312-3316. doi: 10.7498/aps.54.3312
    [14] 胡明列, 柴路, 王清月, 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究. 物理学报, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [15] 崔万秋, 沈志奇, 周德保. Li2Mo2-xWxO6多晶材料的结构、电学性能与导电机理的研究. 物理学报, 1993, 42(7): 1101-1109. doi: 10.7498/aps.42.1101
    [16] 崔万秋;沈志奇;周德保. Li_2Mo_2-x_W_xO_6多晶材料的结构_电学性能与导电机理的研究. 物理学报, 1991, 40(7): 1101-1109.
    [17] 李志宏, 吴忠华, 徐 耀, 吴 东, 孙予罕, 梁丽萍, 张 磊. 溶胶-凝胶方法制备ZrO2及聚合物掺杂ZrO2单层光学增反射膜. 物理学报, 2006, 55(8): 4371-4382. doi: 10.7498/aps.55.4371
    [18] 刘晃清, 王玲玲, 邹炳锁. 退火温度对ZrO2纳米材料中Eu3+离子发光的影响. 物理学报, 2007, 56(1): 556-560. doi: 10.7498/aps.56.556
    [19] 蒋晓东, 魏晓峰, 李志宏, 吴忠华, 徐 耀, 章 斌, 吴 东, 孙予罕, 梁丽萍, 张 磊. PVP掺杂-ZrO2溶胶-凝胶工艺制备多层激光高反射膜的研究. 物理学报, 2006, 55(11): 6175-6184. doi: 10.7498/aps.55.6175
    [20] 梁丽萍, 郝建英, 秦 梅, 郑建军. 基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数. 物理学报, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
  • 引用本文:
    Citation:
计量
  • 文章访问数:  645
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-13
  • 修回日期:  2017-01-16
  • 刊出日期:  2017-04-05

基于Ni电极和ZrO2/SiO2/ZrO2介质的MIM电容的导电机理研究

  • 1. 复旦大学微电子学院, 专用集成电路与系统国家重点实验室, 上海 200433
  • 通信作者: 丁士进, sjding@fudan.edu.cn
    基金项目: 

    国家02科技重大专项(批准号:2015ZX02102-003)资助的课题.

摘要: 研究了基于Ni电极和原子层淀积的ZrO2/SiO2/ZrO2对称叠层介质金属-绝缘体-金属(MIM)电容的电学性能. 当叠层介质的厚度固定在14 nm时,随着SiO2层厚度从0增加到2 nm,所得电容密度从13.1 fF/m2逐渐减小到9.3 fF/m2,耗散因子从0.025逐渐减小到0.02. 比较MIM电容的电流-电压(I-V)曲线,发现在高压下电流密度随着SiO2厚度的增加而减小,在低压下电流密度的变化不明显,还观察到电容在正、负偏压下表现出完全不同的导电特性,在正偏压下表现出不同的高、低场I-V特性,而在负偏压下则以单一的I-V特性为主导. 进一步对该电容在高、低场下以及电子顶部和底部注入时的导电机理进行了研究. 结果表明,当电子从底部注入时,在高场和低场下分别表现出普尔-法兰克(PF)发射和陷阱辅助隧穿(TAT)的导电机理;当电子从顶部注入时,在高、低场下均表现出TAT导电机理. 主要原因在于底电极Ni与ZrO2之间存在镍的氧化层(NiOx),且ZrO2介质层中含有深浅两种能级陷阱(分别为0.9和2.3 eV),当电子注入的模式和外电场不同时,不同能级的陷阱对电子的传导产生作用.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回