搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

O2分子B3u-态势能曲线的从头计算

李晨曦 郭迎春 王兵兵

O2分子B3u-态势能曲线的从头计算

李晨曦, 郭迎春, 王兵兵
PDF
导出引用
导出核心图
  • B3u-态是O2的最强的三重跃迁(B3u-X3g-) Schumann-Runge(SR)带的上态,SR吸收带在保护地球、阻止紫外辐射等方面起着关键作用.SR连续带的光解离是平流层O原子及O3的主要来源,掌握详细准确的O2分子的电子态势能曲线,有助于对这些光谱现象的深入理解.本文通过MOLPRO 软件,采用包含Davison修正的内收缩的多参考组态相互作用(icMRCI+Q)方法,对O2的B3u-态的势能曲线进行了计算,采用的多参考组态函数来自完全活性空间自洽场计算.首先,采用共价组态构成多参考组态,对和B3u-态对称性相同的四个态进行了态平均计算,发现B3u-态不存在双势阱结构,文献(Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014 124 216) 中双势阱的产生是根的振荡(root flipping)造成的,即B3u- 态的势能曲线在核间距约为0.2 nm处跳变到能量相近的23 态的势能曲线上.本文中的态平均计算避免了这种根的振荡.接着,采用完全活性空间组态相互作用的方法计算B3u- 态的势能曲线,通过改变活性空间的轨道组成,发现带有2u轨道电子布居的里德伯组态对B3u-态的束缚态的特征的出现是必不可少的.最后,通过将2u轨道加入到活性空间中,实现将相关的里德伯组态加入到多参考组态,对B3u-态的势能曲线进行了icMRCI+Q计算,得到相较于以往的理论计算与实验值更加相近的势能曲线以及光谱常数.本文探讨里德伯组态贡献的过程为如何确定多参考组态相互作用计算中的参考组态、提高理论计算的准确度提供了可以借鉴的途径.
      通信作者: 郭迎春, ycguo@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474348,61275128)资助的课题.
    [1]

    Suzuki D, Kato H, Ohkawa M, Anzai K, Tanaka H, Vieira P, Campbell L, Brunger M J 2011 J. Chem. Phys. 134 064311

    [2]

    Krupenie P H 1972 J. Phys. Chem. Ref. Data 1 423

    [3]

    Lewis B R, Gibson S T, Slanger T G, Huestis D L 1999 J. Chem. Phys. 110 11129

    [4]

    Chiu S S, Cheung A S, Finch M, Jamieson M J, Yoshino K, Dalgarno A, Parkinson W H 1992 J. Chem. Phys. 97 1787

    [5]

    Lewis B R, Gibson S T, Dooley P M 1994 J. Chem. Phys. 100 7012

    [6]

    Lewis B R, Berzins L, Carver J H 1986 J. Quant. Spectrosc. Radiat. Transfer 36 209

    [7]

    Saxon R P, Liu B 1977 J. Chem. Phys. 67 5432

    [8]

    Buenker R J, Peyerimhoff S D, Peric M 1976 Chem. Phys. Lett. 42 383

    [9]

    Tatewaki H, Tanaka K, Sasaki F, Obara S, Ohno K, Yoshimine M 1979 Int. J. Quantum Chem. 15 533

    [10]

    Muller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227

    [11]

    Liu H, Shi D S, Sun J F, Zhu Z L, Zhang S L 2014 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124 216

    [12]

    Langhoff S R, Davidson E R 1974 Mol. Int. J. Quantum Chem. 8 61

    [13]

    Werner H J, Knowles P J 1984 J. Chem. Phys. 82 5053

    [14]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [15]

    Werner H J, Meyer W 1981 J. Chem. Phys. 74 5794

    [16]

    LeRoy R J 2002 University of Waterloo Chemical Physics Research Report CP-655

    [17]

    Woon D E, Dunning T H 1994 J. Chem. Phys. 100 2975

    [18]

    Halkier A, Helgaker T, Jrgensen P, Klopper W, Koch H, Olsen J, Wilson A K 1998 Chem. Phys. Lett. 286 243

    [19]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572

    [20]

    Jong W D, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [21]

    Kiljunen T, Eloranta J, Khriachtchev H K, Pettersson M, Rsnen M 2000 J. Chem.Phys. 112 7475

    [22]

    Yan B, Pan S P, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 物理学报 54 5618]

    [23]

    Minaev B F, Minaeva V A 2001 Phys. Chem. Chem. Phys. 3 720

  • [1]

    Suzuki D, Kato H, Ohkawa M, Anzai K, Tanaka H, Vieira P, Campbell L, Brunger M J 2011 J. Chem. Phys. 134 064311

    [2]

    Krupenie P H 1972 J. Phys. Chem. Ref. Data 1 423

    [3]

    Lewis B R, Gibson S T, Slanger T G, Huestis D L 1999 J. Chem. Phys. 110 11129

    [4]

    Chiu S S, Cheung A S, Finch M, Jamieson M J, Yoshino K, Dalgarno A, Parkinson W H 1992 J. Chem. Phys. 97 1787

    [5]

    Lewis B R, Gibson S T, Dooley P M 1994 J. Chem. Phys. 100 7012

    [6]

    Lewis B R, Berzins L, Carver J H 1986 J. Quant. Spectrosc. Radiat. Transfer 36 209

    [7]

    Saxon R P, Liu B 1977 J. Chem. Phys. 67 5432

    [8]

    Buenker R J, Peyerimhoff S D, Peric M 1976 Chem. Phys. Lett. 42 383

    [9]

    Tatewaki H, Tanaka K, Sasaki F, Obara S, Ohno K, Yoshimine M 1979 Int. J. Quantum Chem. 15 533

    [10]

    Muller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227

    [11]

    Liu H, Shi D S, Sun J F, Zhu Z L, Zhang S L 2014 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124 216

    [12]

    Langhoff S R, Davidson E R 1974 Mol. Int. J. Quantum Chem. 8 61

    [13]

    Werner H J, Knowles P J 1984 J. Chem. Phys. 82 5053

    [14]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [15]

    Werner H J, Meyer W 1981 J. Chem. Phys. 74 5794

    [16]

    LeRoy R J 2002 University of Waterloo Chemical Physics Research Report CP-655

    [17]

    Woon D E, Dunning T H 1994 J. Chem. Phys. 100 2975

    [18]

    Halkier A, Helgaker T, Jrgensen P, Klopper W, Koch H, Olsen J, Wilson A K 1998 Chem. Phys. Lett. 286 243

    [19]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572

    [20]

    Jong W D, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [21]

    Kiljunen T, Eloranta J, Khriachtchev H K, Pettersson M, Rsnen M 2000 J. Chem.Phys. 112 7475

    [22]

    Yan B, Pan S P, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 物理学报 54 5618]

    [23]

    Minaev B F, Minaeva V A 2001 Phys. Chem. Chem. Phys. 3 720

  • [1] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [2] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [3] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [4] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [5] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [6] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [7] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [8] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [9] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [10] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [11] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究. 物理学报, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [12] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究. 物理学报, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [13] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [14] 孙金锋, 朱遵略, 刘慧, 施德恒. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [15] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [16] 朱遵略, 孙金锋, 刘慧, 邢伟, 施德恒. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [17] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [18] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [19] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [20] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  773
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-27
  • 修回日期:  2017-03-15
  • 刊出日期:  2017-05-20

O2分子B3u-态势能曲线的从头计算

  • 1. 华东师范大学物理与材料科学学院, 上海 200241;
  • 2. 中国科学院物理研究所, 凝聚态物理国家重点实验室, 光物理实验室, 北京 100190
  • 通信作者: 郭迎春, ycguo@phy.ecnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11474348,61275128)资助的课题.

摘要: B3u-态是O2的最强的三重跃迁(B3u-X3g-) Schumann-Runge(SR)带的上态,SR吸收带在保护地球、阻止紫外辐射等方面起着关键作用.SR连续带的光解离是平流层O原子及O3的主要来源,掌握详细准确的O2分子的电子态势能曲线,有助于对这些光谱现象的深入理解.本文通过MOLPRO 软件,采用包含Davison修正的内收缩的多参考组态相互作用(icMRCI+Q)方法,对O2的B3u-态的势能曲线进行了计算,采用的多参考组态函数来自完全活性空间自洽场计算.首先,采用共价组态构成多参考组态,对和B3u-态对称性相同的四个态进行了态平均计算,发现B3u-态不存在双势阱结构,文献(Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014 124 216) 中双势阱的产生是根的振荡(root flipping)造成的,即B3u- 态的势能曲线在核间距约为0.2 nm处跳变到能量相近的23 态的势能曲线上.本文中的态平均计算避免了这种根的振荡.接着,采用完全活性空间组态相互作用的方法计算B3u- 态的势能曲线,通过改变活性空间的轨道组成,发现带有2u轨道电子布居的里德伯组态对B3u-态的束缚态的特征的出现是必不可少的.最后,通过将2u轨道加入到活性空间中,实现将相关的里德伯组态加入到多参考组态,对B3u-态的势能曲线进行了icMRCI+Q计算,得到相较于以往的理论计算与实验值更加相近的势能曲线以及光谱常数.本文探讨里德伯组态贡献的过程为如何确定多参考组态相互作用计算中的参考组态、提高理论计算的准确度提供了可以借鉴的途径.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回