搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究

潘国兴 李田 汤国强 张发培

高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究

潘国兴, 李田, 汤国强, 张发培
PDF
导出引用
导出核心图
  • 有效地控制有机半导体分子取向和堆积特性对实现高性能电子器件具有非常重要的意义,而发展简便高效的溶液相成膜技术是实现这一目的的重要途径.本文采用改进的溶液浸涂法,成功地成长出大面积宏观取向的半导体聚合物P(NDI2OD-T2)和PTHBDTP薄膜.偏光显微镜和极化的紫外-可见光吸收谱测量显示,薄膜中聚合物分子主链骨架沿成膜时液面下移方向择优取向.原子力显微镜观察到聚合物薄膜由纳米尺度的取向有序晶畴构成,畴的取向与分子链的取向一致.采用衬底-溶液界面处表面张力和溶剂蒸发诱导的分子自组织过程来解释浸涂法生长聚合物取向薄膜的微观机理.使用取向的P(NDI2OD-T2)薄膜制备场效应晶体管,显著地提高了电子迁移率(可达4倍),并实现高达19的迁移率各向异性度.这可归因于共轭的聚合物主链骨架择优取向引起电荷传导通路的变化.
      通信作者: 张发培, fzhang@hmfl.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574314,U1532156)和中国科学院百人计划资助的课题.
    [1]

    Sirringhaus H 2014 Adv. Mater. 26 1319

    [2]

    Horowitz G, Hajlaoui M E 2000 Adv. Mater. 12 1046

    [3]

    Hallam T, Lee M J, Zhao N, Nandhakumar I, Kemerink M, Heeney M, McCulloch I, Sirringhaus H 2009 Phys. Rev. Lett. 103 256803

    [4]

    Hiszpanski A M, Loo Y L 2014 Energy Environ. Sci. 7 592

    [5]

    Liu S, Wang W M, Briseno A L, Mannsfeld S C B, Bao Z 2009 Adv. Mater. 21 1217

    [6]

    Yan L H, Wu R T, Bao D L, Ren J H, Zhang Y F, Zhang H G, Huang L, Wang Y L, Du S X, Huan Q, Gao H J 2015 Chin. Phys. B 24 076802

    [7]

    Jiang Z B, Peng M J, Li L L, Zhou D S, Wang R, Xue G 2015 Chin. Phys. B 24 076801

    [8]

    Dyreklev P, Gustafsson G, Ingans O, Stubb H 1992 Solid State Commun. 82 317

    [9]

    Diao Y, Tee B C K, Giri G, Xu J, Kim D H, Becerril H A, Stoltenberg R M, Lee T H, Xue G, Mannsfeld S C B, Bao Z 2013 Nat. Mater. 12 665

    [10]

    Yuan Y, Giri G, Ayzner A L, Zoombelt S A, Mannsfeld S C B, Chen J, Nordlund D, Toney M F, Huang J, Bao Z 2014 Nat. Commun. 5 3005

    [11]

    Pan G, Chen F, Hu L, Zhang K, Dai J, Zhang F 2015 Adv. Funct. Mater. 25 5126

    [12]

    Nagamatsu S, Takashima W, Kaneto K, Yoshida Y, Tanigaki N, Yase K, Omote K 2003 Macromolecules 36 5252

    [13]

    Misaki M, Ueda Y, Nagamatsu S, Yoshida Y, Tanigaki N, Yase K 2004 Macromolecules 37 6926

    [14]

    Zheng Z J, Yim K H, Saifullah M S M, Welland M E, Friend R H, Kim J S, Huck W T S 2007 Nano Lett. 7 987

    [15]

    Pandey M, Nagamatsu S, Pandey S S, Hayase S, Takashima W 2016 Org. Electron. 38 115

    [16]

    Lee W H, Kim D H, Jang Y, Cho J H, Hwang M, Park Y D, Kim Y H, Han J I, Cho K 2007 Appl. Phys. Lett. 90 132106

    [17]

    Uemura T, Hirose Y, Uno M, Takimiya K, Takeya J 2009 Appl. Phys. Express 2 111501

    [18]

    Zhang C, Zhang X, Zhang X, Fan X, Jie J, Chang J C, Lee C S, Zhang W, Lee S T 2008 Adv. Mater. 20 1716

    [19]

    Zhang Y, Deng W, Zhang X, Zhang X, Zhang X, Xing Y, Jie J 2013 ACS Appl. Mater. Interfaces 5 12288

    [20]

    Chen Z, Zheng Y, Yan H, Facchetti A 2009 J. Am. Chem. Soc. 131 8

    [21]

    Rivnay J, Toney M F, Zheng Y, Kauvar I V, Chen Z, Wagner V, Facchetti A, Salleo A 2010 Adv. Mater. 22 4359

    [22]

    Yan H, Chen Z, Zheng Y, Newman C, Quinn J R, Doetz F, Kastler M, Facchetti A 2009 Nature 457 679

    [23]

    Cao J, Qian L, Lu F, Zhang J, Feng Y, Qiu X, Yip H L, Ding L 2015 Chem. Commun. 51 11830

    [24]

    Pan H, Xiao Z, Xie F, Li Q, Ding L 2017 RSC Adv. 7 3439

    [25]

    Brinkmann M, Gonthier E, Bogen S, Tremel K, Ludwigs S, Hufnagel M, Sommer M 2012 ACS Nano 6 10319

    [26]

    Steyrleuthner R, Schubert M, Howard I, Klaumunzer B, Schilling K, Chen Z, Saalfrank P, Laquai F, Facchetti A, Neher D 2012 J. Am. Chem. Soc. 134 18303

    [27]

    Steyrleuthner R, Polzer F, Himmelberger S, Schubert M, Chen Z, Zhang S, Salleo A, Ade H, Facchetti A, Neher D 2014 J. Am. Chem. Soc. 136 4245

    [28]

    Salleo A, Chabinyc M L, Yang M S, Street R A 2002 Appl. Phys. Lett. 81 4383

    [29]

    Xie Y T, Ouyang S H, Wang D P, Zhu D L, Xu X, Tan T, Fong H H 2015 Chin. Phys. B 24 096803

    [30]

    Meijer E J, Gelinck G H, Veenendaal E V, Huisman B H, de Leeuw D M, Klapwijk T M 2003 Appl. Phys. Lett. 82 4576

    [31]

    Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A 2013 Nat. Mater. 12 1038

  • [1]

    Sirringhaus H 2014 Adv. Mater. 26 1319

    [2]

    Horowitz G, Hajlaoui M E 2000 Adv. Mater. 12 1046

    [3]

    Hallam T, Lee M J, Zhao N, Nandhakumar I, Kemerink M, Heeney M, McCulloch I, Sirringhaus H 2009 Phys. Rev. Lett. 103 256803

    [4]

    Hiszpanski A M, Loo Y L 2014 Energy Environ. Sci. 7 592

    [5]

    Liu S, Wang W M, Briseno A L, Mannsfeld S C B, Bao Z 2009 Adv. Mater. 21 1217

    [6]

    Yan L H, Wu R T, Bao D L, Ren J H, Zhang Y F, Zhang H G, Huang L, Wang Y L, Du S X, Huan Q, Gao H J 2015 Chin. Phys. B 24 076802

    [7]

    Jiang Z B, Peng M J, Li L L, Zhou D S, Wang R, Xue G 2015 Chin. Phys. B 24 076801

    [8]

    Dyreklev P, Gustafsson G, Ingans O, Stubb H 1992 Solid State Commun. 82 317

    [9]

    Diao Y, Tee B C K, Giri G, Xu J, Kim D H, Becerril H A, Stoltenberg R M, Lee T H, Xue G, Mannsfeld S C B, Bao Z 2013 Nat. Mater. 12 665

    [10]

    Yuan Y, Giri G, Ayzner A L, Zoombelt S A, Mannsfeld S C B, Chen J, Nordlund D, Toney M F, Huang J, Bao Z 2014 Nat. Commun. 5 3005

    [11]

    Pan G, Chen F, Hu L, Zhang K, Dai J, Zhang F 2015 Adv. Funct. Mater. 25 5126

    [12]

    Nagamatsu S, Takashima W, Kaneto K, Yoshida Y, Tanigaki N, Yase K, Omote K 2003 Macromolecules 36 5252

    [13]

    Misaki M, Ueda Y, Nagamatsu S, Yoshida Y, Tanigaki N, Yase K 2004 Macromolecules 37 6926

    [14]

    Zheng Z J, Yim K H, Saifullah M S M, Welland M E, Friend R H, Kim J S, Huck W T S 2007 Nano Lett. 7 987

    [15]

    Pandey M, Nagamatsu S, Pandey S S, Hayase S, Takashima W 2016 Org. Electron. 38 115

    [16]

    Lee W H, Kim D H, Jang Y, Cho J H, Hwang M, Park Y D, Kim Y H, Han J I, Cho K 2007 Appl. Phys. Lett. 90 132106

    [17]

    Uemura T, Hirose Y, Uno M, Takimiya K, Takeya J 2009 Appl. Phys. Express 2 111501

    [18]

    Zhang C, Zhang X, Zhang X, Fan X, Jie J, Chang J C, Lee C S, Zhang W, Lee S T 2008 Adv. Mater. 20 1716

    [19]

    Zhang Y, Deng W, Zhang X, Zhang X, Zhang X, Xing Y, Jie J 2013 ACS Appl. Mater. Interfaces 5 12288

    [20]

    Chen Z, Zheng Y, Yan H, Facchetti A 2009 J. Am. Chem. Soc. 131 8

    [21]

    Rivnay J, Toney M F, Zheng Y, Kauvar I V, Chen Z, Wagner V, Facchetti A, Salleo A 2010 Adv. Mater. 22 4359

    [22]

    Yan H, Chen Z, Zheng Y, Newman C, Quinn J R, Doetz F, Kastler M, Facchetti A 2009 Nature 457 679

    [23]

    Cao J, Qian L, Lu F, Zhang J, Feng Y, Qiu X, Yip H L, Ding L 2015 Chem. Commun. 51 11830

    [24]

    Pan H, Xiao Z, Xie F, Li Q, Ding L 2017 RSC Adv. 7 3439

    [25]

    Brinkmann M, Gonthier E, Bogen S, Tremel K, Ludwigs S, Hufnagel M, Sommer M 2012 ACS Nano 6 10319

    [26]

    Steyrleuthner R, Schubert M, Howard I, Klaumunzer B, Schilling K, Chen Z, Saalfrank P, Laquai F, Facchetti A, Neher D 2012 J. Am. Chem. Soc. 134 18303

    [27]

    Steyrleuthner R, Polzer F, Himmelberger S, Schubert M, Chen Z, Zhang S, Salleo A, Ade H, Facchetti A, Neher D 2014 J. Am. Chem. Soc. 136 4245

    [28]

    Salleo A, Chabinyc M L, Yang M S, Street R A 2002 Appl. Phys. Lett. 81 4383

    [29]

    Xie Y T, Ouyang S H, Wang D P, Zhu D L, Xu X, Tan T, Fong H H 2015 Chin. Phys. B 24 096803

    [30]

    Meijer E J, Gelinck G H, Veenendaal E V, Huisman B H, de Leeuw D M, Klapwijk T M 2003 Appl. Phys. Lett. 82 4576

    [31]

    Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A 2013 Nat. Mater. 12 1038

  • [1] 刘 军, 侯延冰, 孙 鑫, 师全民, 李 妍, 靳 辉, 鲁 晶. 电场诱导聚合物分子取向对单线态和三线态激子形成截面的影响. 物理学报, 2007, 56(5): 2845-2851. doi: 10.7498/aps.56.2845
    [2] 聂国政, 彭俊彪, 周仁龙. CuI/Al双层电极的有机场效应晶体管. 物理学报, 2011, 60(12): 127304. doi: 10.7498/aps.60.127304
    [3] 石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维. 基于栅绝缘层表面修饰的有机场效应晶体管迁移率的研究进展 . 物理学报, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [4] 赵赓, 程晓曼, 田海军, 杜博群, 梁晓宇, 吴峰. V2O5电极修饰对C60/Pentacene双层异质结场效应晶体管性能的影响. 物理学报, 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [5] 黄超, 刘凌云, 方军, 张文华, 王凯, 高品, 徐法强. 强磁场对酞菁铁薄膜分子取向及形貌的影响. 物理学报, 2016, 65(15): 156101. doi: 10.7498/aps.65.156101
    [6] 曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰. 苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究. 物理学报, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [7] 周效信, 杨增强. 控制双激光脉冲的宽度提高N2分子的取向. 物理学报, 2008, 57(7): 4099-4103. doi: 10.7498/aps.57.4099
    [8] 姚江峰, 田雪雁, 赵谡玲, 徐征, 张福俊, 樊星, 龚伟, 贾全杰, 陈雨. 高分子有机场效应晶体管中半导体薄膜结晶行为及微观结构变化的研究. 物理学报, 2011, 60(2): 027201. doi: 10.7498/aps.60.027201
    [9] 张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩/Ni(100)的界面能级结构随薄膜厚度的演化. 物理学报, 2016, 65(4): 047902. doi: 10.7498/aps.65.047902
    [10] 张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化. 物理学报, 2016, 65(15): 157901. doi: 10.7498/aps.65.157901
    [11] 姚江峰, 田雪雁, 赵谡玲, 徐征, 张福俊, 龚伟, 樊星, 贾全杰, 陈雨. 高分子有机场效应晶体管中退火引起的自组织微观结构变化的研究. 物理学报, 2011, 60(5): 057201. doi: 10.7498/aps.60.057201
    [12] 赵逸涵, 段宝兴, 袁嵩, 吕建梅, 杨银堂. 具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管. 物理学报, 2017, 66(7): 077302. doi: 10.7498/aps.66.077302
    [13] 董京, 柴玉华, 赵跃智, 石巍巍, 郭玉秀, 仪明东, 解令海, 黄维. 柔性有机场效应晶体管研究进展. 物理学报, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [14] 杜磊, 李伟华, 庄奕琪, 包军林. n型金属氧化物半导体场效应晶体管噪声非高斯性研究. 物理学报, 2009, 58(10): 7183-7188. doi: 10.7498/aps.58.7183
    [15] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 王冠宇. 应变Si n型金属氧化物半导体场效应晶体管电荷模型. 物理学报, 2014, 63(1): 017101. doi: 10.7498/aps.63.017101
    [16] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [17] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件. 物理学报, 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
    [18] 余学峰, 任迪远, 高博, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [19] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究. 物理学报, 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
  • 引用本文:
    Citation:
计量
  • 文章访问数:  310
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-08
  • 修回日期:  2017-05-23
  • 刊出日期:  2017-08-05

高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究

  • 1. 中国科学院强磁场科学中心, 合肥 230031;
  • 2. 中国科学技术大学, 合肥 230026
  • 通信作者: 张发培, fzhang@hmfl.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11574314,U1532156)和中国科学院百人计划资助的课题.

摘要: 有效地控制有机半导体分子取向和堆积特性对实现高性能电子器件具有非常重要的意义,而发展简便高效的溶液相成膜技术是实现这一目的的重要途径.本文采用改进的溶液浸涂法,成功地成长出大面积宏观取向的半导体聚合物P(NDI2OD-T2)和PTHBDTP薄膜.偏光显微镜和极化的紫外-可见光吸收谱测量显示,薄膜中聚合物分子主链骨架沿成膜时液面下移方向择优取向.原子力显微镜观察到聚合物薄膜由纳米尺度的取向有序晶畴构成,畴的取向与分子链的取向一致.采用衬底-溶液界面处表面张力和溶剂蒸发诱导的分子自组织过程来解释浸涂法生长聚合物取向薄膜的微观机理.使用取向的P(NDI2OD-T2)薄膜制备场效应晶体管,显著地提高了电子迁移率(可达4倍),并实现高达19的迁移率各向异性度.这可归因于共轭的聚合物主链骨架择优取向引起电荷传导通路的变化.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回