搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多载波微放电阈值的粒子模拟及分析

新波 张小宁 李韵 崔万照 张洪太 李永东 王洪广 翟永贵 刘纯亮

引用本文:
Citation:

多载波微放电阈值的粒子模拟及分析

新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮

Particle simulation and analysis of threshold for multicarrier multipactor

Wang Xin-Bo, Zhang Xiao-Ning, Li Yun, Cui Wan-Zhao, Zhang Hong-Tai, Li Yong-Dong, Wang Hong-Guang, Zhai Yong-Gui, Liu Chun-Liang
PDF
导出引用
  • 多载波微放电阈值的准确分析对于空间大功率微波系统的长期可靠性至关重要.近年来,一种源于多载波包络周期间少量剩余电子累积的长周期微放电机制引发广泛关注.国内外研究者普遍认为,相对源于单个周期内电子累积的周期内微放电,长周期微放电应该被优先激发、具有更低的阈值.但依据长周期微放电判据分析所得的阈值显著高于实验结果.针对这一问题,本文采用与实验系统可比拟的微放电判据,在相同多载波信号激励、相同微波部件条件下,对微放电的演化过程进行了粒子模拟,分析了多载波微放电、特别是周期内微放电的行为特性和发生条件,有效地解释了实验结果.本文的粒子模拟结果表明,给定微波部件被优先激发的多载波微放电类型取决于载波频率的配置,长周期微放电并非一定被优先激发,这是导致基于长周期微放电判据分析所得阈值显著高于实验结果这一问题的原因所在.以上结论对于空间大功率微波部件的多载波微放电全局阈值评估和抑制设计具有指导意义.
    The multicarrier multipactor is a phenomenon that can be observed in vacuum environment due to the effect of secondary electron emission. Accurate analysis of the threshold of multicarrier multipactor is crucial for the long-term reliability of high-power spaceborne microwave system, and therefore it has been attracting more and more interests in fields of high-power microwave community, plasma physics and aerospace engineering. Recently, a new mechanism of multicarrier multipactor, termed long-term multipactor, induced by sustained accumulation of residual electrons between successive envelope periods of multicarrier signals has received much attention. Comparing with the single-event multipactor induced by the electron accumulation inside a single envelop period, researchers tend to believe that the threshold of the long-term discharge should be lower. However, recent experimental results show an opposite conclusion. In this work, in order to investigate the contradiction between the experimental and theoretical studies on the thresholds of multicarrier multipactors, particle simulations are used to simulate the evolution process of the multicarrier multipactor under the same conditions and judgement criterion. The behavioral characteristics and occurrence condition for multicarrier multipactors, especially the single-event ones, are analyzed based on a power scanning analysis, and the conflicting results are effectively explained. Our simulations show that if the evolution process of a multipactor can be divided into three phases, i.e., establishment phase, critical phase and saturation phase, the experimental reflection coefficient can be corresponding to the reflection coefficient simulated in the critical phase. The simulation results indicate that the type of the multipactor discharge would depend on the configuration of multicarrier signals. For multicarrier signals with relatively narrow bandwidths, single-event multicarrier multipactors could occur in the first place at a lower threshold power. Therefore, the threshold of a long-term discharge is not necessarily lower than that of a single-event one. This conclusion is important for estimating and suppressing the multicarrier multipactors in the design of high-power spaceborne microwave components.
      通信作者: 崔万照, cuiwanzhao@126.com
    • 基金项目: 国家自然科学基金(批准号:U1537211)和空间微波技术重点实验室基金(批准号:9140C530101150C53011)资助的课题.
      Corresponding author: Cui Wan-Zhao, cuiwanzhao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.U1537211) and the Foundation of National Key Laboratory of Science and Technology on Space Microwave,China (Grant No.9140C530101150C53011).
    [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [4]

    Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)

    [5]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [6]

    Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [7]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [8]

    Hatch A J, Williams H B 1958 Phys. Rev. 112 681

    [9]

    ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)

    [10]

    Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112

    [11]

    Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105

    [12]

    Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Technol. 60 2093

    [13]

    Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 物理学报 63220205]

    [14]

    Wang X B, Li Y D, Cui W Z, Li Y, Zhang H T, Zhang X N, Liu C L 2016 Acta Phys. Sin. 65 047901 (in Chinese) [王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮 2016 物理学报 65 047901]

    [15]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (Wiley-IEEE Press)

    [16]

    Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)

    [17]

    Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830

    [18]

    Vicente C, Mattes M, Wolk D, Hartnagel H L, Mosig J R, Raboso D 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, USA June 12-17, 2005 p1055

  • [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [4]

    Rasch J 2012 Ph. D. Dissertation (Goteborg: Chalmers University of Technology)

    [5]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [6]

    Coves A, Torregrosa P G, Vicente C, Gemeino B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [7]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [8]

    Hatch A J, Williams H B 1958 Phys. Rev. 112 681

    [9]

    ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test (vol. ECSS-20-01A) (Noordwijk: ESA Publication Division)

    [10]

    Anza S, Vicente C, Gimeno B, Boria V E, Armendriz J 2007 Phys. Plasmas 14 082112

    [11]

    Anza S, Mattes M, Vicente C, Gil J, Raboso D, Boria V E, Gimeno B 2011 Phys. Plasmas 18 032105

    [12]

    Anza S, Vicente C, Gil J, Mattes M, Wolk D, Wochner U, Boria V E, Gimeno B, Raboso D 2012 IEEE Trans. Microw. Theory Technol. 60 2093

    [13]

    Song Q Q, Wang X B, Cui W Z, Wang Z Y, Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese) [宋庆庆, 王新波, 崔万照, 王志宇, 冉立新 2014 物理学报 63220205]

    [14]

    Wang X B, Li Y D, Cui W Z, Li Y, Zhang H T, Zhang X N, Liu C L 2016 Acta Phys. Sin. 65 047901 (in Chinese) [王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮 2016 物理学报 65 047901]

    [15]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (Wiley-IEEE Press)

    [16]

    Kong J A 2008 Electromagnetic Wave Theory (2008 Ed.) (Cambridge: EMW Publishing)

    [17]

    Vaughan J R M 1993 IEEE Trans. Electron. Dev. 40 830

    [18]

    Vicente C, Mattes M, Wolk D, Hartnagel H L, Mosig J R, Raboso D 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, USA June 12-17, 2005 p1055

  • [1] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟. 物理学报, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] 王新波, 白鹤, 孙勤奋, 殷新社, 张洪太, 崔万照. 真空罐穿舱法兰介质微放电的实验研究. 物理学报, 2021, 70(12): 127901. doi: 10.7498/aps.70.20210106
    [3] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [4] 翟永贵, 王瑞, 王洪广, 林舒, 陈坤, 李永东. 介质部分填充平行平板传输线微放电过程分析. 物理学报, 2018, 67(15): 157901. doi: 10.7498/aps.67.20180351
    [5] 闫孝鲁, 张晓萍, 李阳梅. X波段新型低阻抗高功率微波源的模拟研究. 物理学报, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402
    [6] 王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮. 基于临界电子密度的多载波微放电全局阈值分析. 物理学报, 2016, 65(4): 047901. doi: 10.7498/aps.65.047901
    [7] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [8] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [9] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [10] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [11] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究. 物理学报, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [12] 石磊, 钱沐杨, 肖坤祥, 黎明. 低气压条件下氢气潘宁放电的模拟分析. 物理学报, 2013, 62(17): 175205. doi: 10.7498/aps.62.175205
    [13] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [14] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [15] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究. 物理学报, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [16] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [17] 郑飞腾, 杨中海, 金晓林. 空心阴极类火花放电初始电离过程的PIC/MCC模拟. 物理学报, 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [18] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [19] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [20] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
计量
  • 文章访问数:  4492
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-08
  • 修回日期:  2017-05-12
  • 刊出日期:  2017-08-05

/

返回文章
返回