搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载流子选择性接触:高效硅太阳电池的选择

肖友鹏 高超 王涛 周浪

载流子选择性接触:高效硅太阳电池的选择

肖友鹏, 高超, 王涛, 周浪
PDF
导出引用
导出核心图
  • 太阳电池可看成由光子吸收层和接触层两个基本单元组成,接触层是高复合活性金属界面和光子吸收层之间的区域.为了进一步提高硅太阳电池的转换效率,关键是降低光子吸收层和接触之间的复合损失.近年来,载流子选择性接触引起了光伏界的研究兴趣,其被认为是接近硅太阳电池效率理论极限的最后的障碍之一.本文分析了三种类型的载流子选择性接触:在光子吸收层与金属界面之间引入薄的重掺杂层,即所谓的发射极或背面场;利用两种材料之间的导带或价带对齐;利用高功函数的金属氧化物与晶硅接触从而在晶硅中感应能带弯曲.基于一维太阳电池模拟软件wxAMPS,模拟了扩散同质结硅太阳电池[结构为(p+)c-Si/(n)c-Si/(n+)c-Si]、非晶硅薄膜硅异质结太阳电池[结构为(p+)a-Si/(i)a-Si/(n)c-Si/(i)a-Si/(n+)a-Si]和氧化物薄膜硅异质结太阳电池[结构为(n)MoOx/(n)c-Si/(n)TiOx]暗态下的能带结构和载流子浓度的空间分布,其中c-Si为晶硅;a-Si为非晶硅;(i),(n)和(p)分别表示本征、n型掺杂和p型掺杂.模拟结果表明:载流子选择性接触的核心是在接触处晶硅表面附近形成载流子浓度空间分布的不对称进而使得电导率的不对称,形成了对电子的高阻和空穴的低阻或者对空穴的高阻和电子的低阻,从而让空穴轻松通过同时阻挡电子,或者让电子轻松通过同时阻挡空穴,形成空穴选择性接触或者电子选择性接触.
      通信作者: 周浪, lzhou@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51361022,61574072)和江西省博士后研究人员科研项目(批准号:2015KY12)资助的课题.
    [1]

    de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032

    [3]

    Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184

    [4]

    Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Appl. Phys. Lett. 104 181105

    [5]

    Cuevas A, Allen T, Bullock J, Wan Y, Yan D, Zhang X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialists Conference Los Angeles, USA, June 14-19, 2015 p1

    [6]

    Wrfel P, Wrfel U 2009Physics of Solar Cells: From Basic Principles to Advanced Concepts (New York: John Wiley Sons) pp93-98

    [7]

    Cuevas A, Yan D 2013 IEEE J. Photovolt. 3 916

    [8]

    Wrfel U, Cuevas A, Wrfel P 2015 IEEE J. Photovolt. 5 461

    [9]

    Brendel R, Peibst R 2016 IEEE J. Photovolt. 6 1413

    [10]

    Bivour M, Macco B, Temmler J, Kessels W M M, Hermle M 2016 Energy Procedia 92 443

    [11]

    Yablonovitch E, Gmitter T, Swanson R M, Kwark Y H 1985 Appl. Phys. Lett. 47 1211

    [12]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124

    [13]

    Zhao L, Zhou C L, Li H L, Diao H M, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [14]

    Hua X, Li Z P, Shen W Z, Xiong G Y, Wang X S, Zhang L J 2012 IEEE Trans. Electron Dev. 59 1227

    [15]

    Islam R, Nazif K N, Saraswat K C 2016 IEEE Trans. Electron Dev. 63 4788

    [16]

    Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109

    [17]

    Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967

    [18]

    Bullock J, Wan Y, Hettick M, Geissbhler J, Ong A J, Kiriya D, Yan D, Allen T, Peng J, Zhang X, Sutter-Fella C M, de Wolf S, Ballif C, Cuevas A, Javey A 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p0210

    [19]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96

    [20]

    Battaglia C, Nicols S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902

    [21]

    Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2014 Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, France, September 30-October 4, 2014 p822

    [22]

    Rmer U, Peibst R, Ohrdes T, Lim B, Krgener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85

    [23]

    Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11

    [24]

    Bivour M, Reusch M, Schrer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566

    [25]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34

    [26]

    Geissbhler J, Werner J, Martin de Nicolas S, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601

    [27]

    Meyer J, Hamwi S, Krger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408

    [28]

    Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265

    [29]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260

    [30]

    Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. Cells 150 32

    [31]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109

    [32]

    Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J, Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells 168 221

  • [1]

    de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032

    [3]

    Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184

    [4]

    Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Appl. Phys. Lett. 104 181105

    [5]

    Cuevas A, Allen T, Bullock J, Wan Y, Yan D, Zhang X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialists Conference Los Angeles, USA, June 14-19, 2015 p1

    [6]

    Wrfel P, Wrfel U 2009Physics of Solar Cells: From Basic Principles to Advanced Concepts (New York: John Wiley Sons) pp93-98

    [7]

    Cuevas A, Yan D 2013 IEEE J. Photovolt. 3 916

    [8]

    Wrfel U, Cuevas A, Wrfel P 2015 IEEE J. Photovolt. 5 461

    [9]

    Brendel R, Peibst R 2016 IEEE J. Photovolt. 6 1413

    [10]

    Bivour M, Macco B, Temmler J, Kessels W M M, Hermle M 2016 Energy Procedia 92 443

    [11]

    Yablonovitch E, Gmitter T, Swanson R M, Kwark Y H 1985 Appl. Phys. Lett. 47 1211

    [12]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124

    [13]

    Zhao L, Zhou C L, Li H L, Diao H M, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [14]

    Hua X, Li Z P, Shen W Z, Xiong G Y, Wang X S, Zhang L J 2012 IEEE Trans. Electron Dev. 59 1227

    [15]

    Islam R, Nazif K N, Saraswat K C 2016 IEEE Trans. Electron Dev. 63 4788

    [16]

    Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109

    [17]

    Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967

    [18]

    Bullock J, Wan Y, Hettick M, Geissbhler J, Ong A J, Kiriya D, Yan D, Allen T, Peng J, Zhang X, Sutter-Fella C M, de Wolf S, Ballif C, Cuevas A, Javey A 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p0210

    [19]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96

    [20]

    Battaglia C, Nicols S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902

    [21]

    Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2014 Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, France, September 30-October 4, 2014 p822

    [22]

    Rmer U, Peibst R, Ohrdes T, Lim B, Krgener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85

    [23]

    Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11

    [24]

    Bivour M, Reusch M, Schrer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566

    [25]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34

    [26]

    Geissbhler J, Werner J, Martin de Nicolas S, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601

    [27]

    Meyer J, Hamwi S, Krger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408

    [28]

    Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265

    [29]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260

    [30]

    Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. Cells 150 32

    [31]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109

    [32]

    Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J, Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells 168 221

  • [1] 朱建敏, 沈文忠. 步进扫描时间分辨光谱及其在太阳电池光电导上的应用. 物理学报, 2004, 53(11): 3716-3723. doi: 10.7498/aps.53.3716
    [2] 赵生盛, 徐玉增, 陈俊帆, 张力, 侯国付, 张晓丹, 赵颖. 免掺杂、非对称异质接触晶体硅太阳电池的研究进展. 物理学报, 2019, 68(4): 048801. doi: 10.7498/aps.68.20181991
    [3] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [4] 王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖. 非晶硅太阳电池BZO/p-a-SiC:H接触特性改善的研究. 物理学报, 2013, 62(5): 058801. doi: 10.7498/aps.62.058801
    [5] 张勇, 刘艳, 吕斌, 王基庆, 张红英, 汤乃云. 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响. 物理学报, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [6] 贺剑雄, 郑家贵, 李 卫, 冯良桓, 蔡 伟, 蔡亚平, 张静全, 黎 兵, 雷 智, 武莉莉, 王文武. CdTe薄膜太阳电池背接触的研究. 物理学报, 2007, 56(9): 5548-5553. doi: 10.7498/aps.56.5548
    [7] 李凤, 马忠权, 孟夏杰, 殷晏庭, 于征汕, 吕鹏. 晶硅太阳电池中Fe-B对与少子寿命、陷阱浓度及内量子效率的相关性. 物理学报, 2010, 59(6): 4322-4329. doi: 10.7498/aps.59.4322
    [8] 鄢 强, 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智. CdTe太阳电池的不同背电极和背接触层的特性研究. 物理学报, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [9] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [10] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
  • 引用本文:
    Citation:
计量
  • 文章访问数:  482
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-06
  • 修回日期:  2017-05-03
  • 刊出日期:  2017-08-05

载流子选择性接触:高效硅太阳电池的选择

  • 1. 南昌大学光伏研究院, 南昌 330031
  • 通信作者: 周浪, lzhou@ncu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51361022,61574072)和江西省博士后研究人员科研项目(批准号:2015KY12)资助的课题.

摘要: 太阳电池可看成由光子吸收层和接触层两个基本单元组成,接触层是高复合活性金属界面和光子吸收层之间的区域.为了进一步提高硅太阳电池的转换效率,关键是降低光子吸收层和接触之间的复合损失.近年来,载流子选择性接触引起了光伏界的研究兴趣,其被认为是接近硅太阳电池效率理论极限的最后的障碍之一.本文分析了三种类型的载流子选择性接触:在光子吸收层与金属界面之间引入薄的重掺杂层,即所谓的发射极或背面场;利用两种材料之间的导带或价带对齐;利用高功函数的金属氧化物与晶硅接触从而在晶硅中感应能带弯曲.基于一维太阳电池模拟软件wxAMPS,模拟了扩散同质结硅太阳电池[结构为(p+)c-Si/(n)c-Si/(n+)c-Si]、非晶硅薄膜硅异质结太阳电池[结构为(p+)a-Si/(i)a-Si/(n)c-Si/(i)a-Si/(n+)a-Si]和氧化物薄膜硅异质结太阳电池[结构为(n)MoOx/(n)c-Si/(n)TiOx]暗态下的能带结构和载流子浓度的空间分布,其中c-Si为晶硅;a-Si为非晶硅;(i),(n)和(p)分别表示本征、n型掺杂和p型掺杂.模拟结果表明:载流子选择性接触的核心是在接触处晶硅表面附近形成载流子浓度空间分布的不对称进而使得电导率的不对称,形成了对电子的高阻和空穴的低阻或者对空穴的高阻和电子的低阻,从而让空穴轻松通过同时阻挡电子,或者让电子轻松通过同时阻挡空穴,形成空穴选择性接触或者电子选择性接触.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回