搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瑞利-泰勒不稳定问题的光滑粒子法模拟研究

杨秀峰 刘谋斌

瑞利-泰勒不稳定问题的光滑粒子法模拟研究

杨秀峰, 刘谋斌
PDF
导出引用
导出核心图
  • 提出了一种适用于模拟多相流的光滑粒子法,该方法对密度方程在交界面处的离散格式进行了修正以适应多相流所涉及的大密度比问题,在不同相粒子之间施加了很小的排斥力以防止粒子穿透交界面,并采用了最新发展的双曲型光滑函数以消除应力不稳定问题.应用该多相流光滑粒子法模拟研究了单模态和多模态瑞利-泰勒不稳定问题.通过与文献中结果的对比研究表明:在模拟瑞利-泰勒不稳定问题时,本文方法的结果明显优于文献中的大部分光滑粒子法模拟结果,与Grenier等(2009 J.Comput.Phys.228 8380)的结果相当,但本文方法比Grenier等的方法简单方便.对于单模态瑞利-泰勒不稳定问题,研究了交界面的形态,涡结构的演化过程以及贯穿深度随时间的变化关系.对于多模态瑞利-泰勒不稳定问题,研究了交界面演化过程中小尺度结构合并成大尺度结构的过程,水平方向的平均密度随高度的变化关系,以及贯穿深度随时间的变化关系.
      通信作者: 刘谋斌, mbliu@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11302237,U1530110)资助的课题.
    [1]

    Rayleigh L 1883 Proc. Lond. Math. Soc. 14 170

    [2]

    Taylor G 1950 Proc. Roy. Soc. A:Math. Phys. 201 192

    [3]

    Lewis D J 1950 Proc. Roy. Soc. A:Math. Phys. 202 81

    [4]

    Tryggvason G 1988 J. Comput. Phys. 75 253

    [5]

    Banerjee R, Kanjilal S 2015 J. Pure Appl. Ind. Phys. 5 73

    [6]

    Sharp D H 1984 Physica D 12 3

    [7]

    Kilkenny J, Glendinning S, Haan S, Hammel B, Lindl J, Munro D, Remington B, Weber S, Knauer J, Verdon C 1994 Phys. Plasmas 1 1379

    [8]

    Huang C S, Kelley M, Hysell D 1993 J. Geophys. Res.-Space Physics 98 15631

    [9]

    Alon U, Hecht J, Ofer D, Shvarts D 1995 Phys. Rev. Lett. 74 534

    [10]

    Dimonte G 2000 Phys. Plasmas 7 2255

    [11]

    Ramshaw J D 1998 Phys. Rev. E 58 5834

    [12]

    Glimm J, Saltz D, Sharp D H 1998 Phys. Rev. Lett. 80 712

    [13]

    Cheng B, Glimm J, Sharp D 2002 Phys. Rev. E 66 036312

    [14]

    Zhang Y S, He Z W, Gao F J, Li X L, Tian B L 2016 Phys. Rev. E 93 063102

    [15]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [16]

    Kadau K, Barber J L, Germann T C, Holian B L, Alder B J 2010 Phil. Trans. R. Soc. A 368 1547

    [17]

    Ramaprabhu P, Karkhanis V, Banerjee R, Varshochi H, Khan M, Lawrie A 2016 Phys. Rev. E 93 013118

    [18]

    Sagert I, Howell J, Staber A, Strother T, Colbry D, Bauer W 2015 Phys. Rev. E 92 013009

    [19]

    Liang H, Li Q, Shi B, Chai Z 2016 Phys. Rev. E 93 033113

    [20]

    Lucy L B 1977 Astron. J. 82 1013

    [21]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [22]

    Yang X, Peng S, Liu M, Shao J 2012 Int. J. Comp. Meth.-Sing 9 1240002

    [23]

    Yang X F, Peng S L, Liu M B 2014 Appl. Math. Model 38 3822

    [24]

    Yang X, Dai L, Kong S C 2017 Proc. Combust. Inst. 36 2393

    [25]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese)[杨秀峰, 刘谋斌2012物理学报61 224701]

    [26]

    Yang X F, Liu M B, Peng S 2014 Comput. Fluids 92 199

    [27]

    Monaghan J J 1992 Ann. Rev. Astron. Astrophys. 30 543

    [28]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [29]

    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B 2009 J. Comput. Phys. 228 8380

    [30]

    Yang X, Liu M 2013 Sci. China:Phys. Mech. Astron. 56 315

    [31]

    Bonet J, Lok T S 1999 Comput. Methods Appl. Mech. Engrg. 180 97

    [32]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [33]

    Chen Z, Zong Z, Liu M, Zou L, Li H, Shu C 2015 J. Comput. Phys. 283 169

    [34]

    Monaghan J, Rafiee A 2013 Int. J. Numerical Mech. Fluids 71 537

    [35]

    Hu X Y, Adams N A 2009 J. Comput. Phys. 228 2082

    [36]

    Yang X F, Liu M B 2016 Chin. J. Comput. Mech. 33 594(in Chinese)[杨秀峰, 刘谋斌2016计算力学学报33 594]

    [37]

    Layzer D 1955 Astrophys. J. 122 1

  • [1]

    Rayleigh L 1883 Proc. Lond. Math. Soc. 14 170

    [2]

    Taylor G 1950 Proc. Roy. Soc. A:Math. Phys. 201 192

    [3]

    Lewis D J 1950 Proc. Roy. Soc. A:Math. Phys. 202 81

    [4]

    Tryggvason G 1988 J. Comput. Phys. 75 253

    [5]

    Banerjee R, Kanjilal S 2015 J. Pure Appl. Ind. Phys. 5 73

    [6]

    Sharp D H 1984 Physica D 12 3

    [7]

    Kilkenny J, Glendinning S, Haan S, Hammel B, Lindl J, Munro D, Remington B, Weber S, Knauer J, Verdon C 1994 Phys. Plasmas 1 1379

    [8]

    Huang C S, Kelley M, Hysell D 1993 J. Geophys. Res.-Space Physics 98 15631

    [9]

    Alon U, Hecht J, Ofer D, Shvarts D 1995 Phys. Rev. Lett. 74 534

    [10]

    Dimonte G 2000 Phys. Plasmas 7 2255

    [11]

    Ramshaw J D 1998 Phys. Rev. E 58 5834

    [12]

    Glimm J, Saltz D, Sharp D H 1998 Phys. Rev. Lett. 80 712

    [13]

    Cheng B, Glimm J, Sharp D 2002 Phys. Rev. E 66 036312

    [14]

    Zhang Y S, He Z W, Gao F J, Li X L, Tian B L 2016 Phys. Rev. E 93 063102

    [15]

    He X, Chen S, Zhang R 1999 J. Comput. Phys. 152 642

    [16]

    Kadau K, Barber J L, Germann T C, Holian B L, Alder B J 2010 Phil. Trans. R. Soc. A 368 1547

    [17]

    Ramaprabhu P, Karkhanis V, Banerjee R, Varshochi H, Khan M, Lawrie A 2016 Phys. Rev. E 93 013118

    [18]

    Sagert I, Howell J, Staber A, Strother T, Colbry D, Bauer W 2015 Phys. Rev. E 92 013009

    [19]

    Liang H, Li Q, Shi B, Chai Z 2016 Phys. Rev. E 93 033113

    [20]

    Lucy L B 1977 Astron. J. 82 1013

    [21]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [22]

    Yang X, Peng S, Liu M, Shao J 2012 Int. J. Comp. Meth.-Sing 9 1240002

    [23]

    Yang X F, Peng S L, Liu M B 2014 Appl. Math. Model 38 3822

    [24]

    Yang X, Dai L, Kong S C 2017 Proc. Combust. Inst. 36 2393

    [25]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese)[杨秀峰, 刘谋斌2012物理学报61 224701]

    [26]

    Yang X F, Liu M B, Peng S 2014 Comput. Fluids 92 199

    [27]

    Monaghan J J 1992 Ann. Rev. Astron. Astrophys. 30 543

    [28]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [29]

    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B 2009 J. Comput. Phys. 228 8380

    [30]

    Yang X, Liu M 2013 Sci. China:Phys. Mech. Astron. 56 315

    [31]

    Bonet J, Lok T S 1999 Comput. Methods Appl. Mech. Engrg. 180 97

    [32]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [33]

    Chen Z, Zong Z, Liu M, Zou L, Li H, Shu C 2015 J. Comput. Phys. 283 169

    [34]

    Monaghan J, Rafiee A 2013 Int. J. Numerical Mech. Fluids 71 537

    [35]

    Hu X Y, Adams N A 2009 J. Comput. Phys. 228 2082

    [36]

    Yang X F, Liu M B 2016 Chin. J. Comput. Mech. 33 594(in Chinese)[杨秀峰, 刘谋斌2016计算力学学报33 594]

    [37]

    Layzer D 1955 Astrophys. J. 122 1

  • [1] 郑无敌, 李永升, 罗平庆, 方智恒, 王伟, 贾果, 董佳钦, 熊俊, 傅思祖, 顾援, 王世绩. 高温烧蚀初始印记及其瑞利-泰勒不稳定性发展的研究. 物理学报, 2009, 58(10): 7057-7061. doi: 10.7498/aps.58.7057
    [2] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟. 物理学报, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [3] 张维岩, 叶文华, 贺贤土, 吴俊峰. 二维不可压流体瑞利-泰勒不稳定性的非线性阈值公式. 物理学报, 2003, 52(7): 1688-1693. doi: 10.7498/aps.52.1688
    [4] 明付仁, 张阿漫, 姚熊亮. 弹性壳结构静力与动力分析的光滑粒子法. 物理学报, 2013, 62(11): 110203. doi: 10.7498/aps.62.110203
    [5] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [6] 张海超, 郑丹晨, 边茂松, 韩敏. 一种基于二维光滑粒子法的流体仿真方法. 物理学报, 2016, 65(24): 244701. doi: 10.7498/aps.65.244701
    [7] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [8] 刘谋斌, 常建忠, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟. 物理学报, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [9] 强洪夫, 石超, 陈福振, 韩亚伟. 基于大密度差多相流SPH方法的二维液滴碰撞数值模拟. 物理学报, 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [10] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 . 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [11] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [12] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究. 物理学报, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [13] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案 . 物理学报, 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [14] 聂小波, 张忠珍, 符鸿源, 沈隆钧, 王继海. 瑞利-泰勒不稳定性的格子玻耳兹曼模拟. 物理学报, 1997, 46(8): 1508-1516. doi: 10.7498/aps.46.1508
    [15] 石长和. 等离子射流的磁流不稳定性. 物理学报, 1965, 21(9): 1700-1704. doi: 10.7498/aps.21.1700
    [16] 王传兵, 陈雁萍, 周国成. 损失锥-束流分布电子驱动的回旋激射不稳定性. 物理学报, 2005, 54(7): 3221-3227. doi: 10.7498/aps.54.3221
    [17] 赵凯歌, 薛创, 王立锋, 叶文华, 吴俊峰, 丁永坤, 张维岩, 贺贤土. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型. 物理学报, 2018, 67(9): 094701. doi: 10.7498/aps.67.20172613
    [18] 叶文华, 张维岩, 贺贤土. 烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式. 物理学报, 2000, 49(4): 762-767. doi: 10.7498/aps.49.762
    [19] 石长和. 不均匀等离子体片流的磁流不稳定性. 物理学报, 1979, 28(2): 263-267. doi: 10.7498/aps.28.263
    [20] 郑春阳, 刘占军, 张爱清, 裴文兵, 李纪伟. 无碰撞等离子体中电子束流不稳定性的时空演化研究. 物理学报, 2005, 54(5): 2138-2146. doi: 10.7498/aps.54.2138
  • 引用本文:
    Citation:
计量
  • 文章访问数:  662
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-01
  • 修回日期:  2017-06-02
  • 刊出日期:  2017-08-05

瑞利-泰勒不稳定问题的光滑粒子法模拟研究

  • 1. Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
  • 2. 北京大学工学院, 北京 100187
  • 通信作者: 刘谋斌, mbliu@pku.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11302237,U1530110)资助的课题.

摘要: 提出了一种适用于模拟多相流的光滑粒子法,该方法对密度方程在交界面处的离散格式进行了修正以适应多相流所涉及的大密度比问题,在不同相粒子之间施加了很小的排斥力以防止粒子穿透交界面,并采用了最新发展的双曲型光滑函数以消除应力不稳定问题.应用该多相流光滑粒子法模拟研究了单模态和多模态瑞利-泰勒不稳定问题.通过与文献中结果的对比研究表明:在模拟瑞利-泰勒不稳定问题时,本文方法的结果明显优于文献中的大部分光滑粒子法模拟结果,与Grenier等(2009 J.Comput.Phys.228 8380)的结果相当,但本文方法比Grenier等的方法简单方便.对于单模态瑞利-泰勒不稳定问题,研究了交界面的形态,涡结构的演化过程以及贯穿深度随时间的变化关系.对于多模态瑞利-泰勒不稳定问题,研究了交界面演化过程中小尺度结构合并成大尺度结构的过程,水平方向的平均密度随高度的变化关系,以及贯穿深度随时间的变化关系.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回