搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟

杨文龙 韩浚生 王宇 林家齐 何国强 孙洪国

聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟

杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国
PDF
导出引用
导出核心图
  • 应用分子模拟方法,建立了聚酰亚胺(polyimide,PI),石墨烯及羧基、氨基、羟基功能化石墨烯模型,探究了聚酰亚胺和石墨烯,聚酰亚胺和功能化石墨烯共混后复合材料的力学性能和玻璃化转变温度(Tg).研究结果表明,羧基修饰的石墨烯与PI复合后材料力学性能增加显著,其杨氏模量和剪切模量分别为4.946 GPa和1.816 GPa.不同官能团修饰的石墨烯引入PI后材料的Tg均有不同程度下降;未修饰的石墨烯与PI复合后,其Tg(559.30 K)较纯PI的Tg(663.57 K)降幅最大;而羧基修饰的石墨烯与PI复合后Tg(601.61 K)降幅最小.计算比较了PI/石墨烯复合材料体系密度、溶解度参数、相互作用能、弹性系数和氢键平均密度,研究发现羧基修饰石墨烯/PI复合材料的密度为1.396 g·cm-3,溶解度参数为23.51 J1/2·cm-3/2,其相互作用能与氢键平均密度最大,弹性系数显示羧基修饰石墨烯与PI组成的复合材料内部最均匀.计算结果表明,羧基功能化石墨烯可以大幅度提高PI的力学性能,增强石墨烯与PI之间的相互作用可以减少复合材料Tg的降幅程度.此基体间相互作用的研究方法可以作为预测聚合物基纳米复合材料结构与性能的有效工具,以期为材料的设计与应用提供理论指导.
      通信作者: 杨文龙, wlyang@hrbust.edu.cn
    • 基金项目: 国家自然基金(批准号:61372013)和黑龙江省自然科学基金(批准号:E201258)资助的课题.
    [1]

    Hernández M, Bernal M D M, Verdejo R, Ezquerra T A, López-Manchado M A 2012 Compos. Sci. Technol. 73 40

    [2]

    Yang X, Tu Y, Li L, Shang S, Tao X M 2010 ACS Appl. Mater. Inter. 2 1707

    [3]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R,Novoselov K S 2010 Physics 22 2694

    [4]

    Kuilla T, Bhadra S, Yao D, Kim N H, Bose S, Lee J H 2010 Prog. Polym. Sci. 35 1350

    [5]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [6]

    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y 2011 J. Mater. Chem. 21 13290

    [7]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [8]

    Chen D, Zhu H, Liu T 2010 ACS Appl. Mater. Inter. 2 3702

    [9]

    Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T 2012 ACS Appl. Mater. Inter. 4 2699

    [10]

    Awasthi A P, Lagoudas D C, Hammerand D C 2009 Model. Simul. Mater. Sci. Eng. 17 015002

    [11]

    Boukhvalov D W, Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205

    [12]

    Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y 2012 ACS Appl. Mater. Inter. 4 4623

    [13]

    Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L, S, Nam J D, Sinh L H, Seppälä J 2011 Polymer 52 5237

    [14]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [15]

    Yoonessi M, Shi Y, Scheiman D A, Lebron-Colon M, Tigelaar D M, Weiss R A, Meador M A 2012 ACS Nano 6 7644

    [16]

    Park O K, Kim S G, You N H, Ku B C, Hui D, Lee J H 2014 Compos. Part B: Eng. 56 365

    [17]

    Kim H, Kobayashi S, AbdurRahim M A, Zhang M J,Khusainova A, Hillmyer M A, Abdala A A, Macosko C W 2011 Polymer 52 1837

    [18]

    Tripathi S N, Saini P, Gupta D, Choudhary V 2013 J.Mater. Sci. 48 6223

    [19]

    Liang J, Yi H, Long Z, Yan W, Ma Y, Guo T, Chen Y 2009 Adv. Funct. Mater. 19 2297

    [20]

    Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S 2011 Carbon 49 198

    [21]

    Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M 2011 J. Mater. Chem. 21 13569

    [22]

    Park O K, Hwang J Y, Goh M, Lee J H, Ku B C, You N H 2013 Macromolecules 46 3505

    [23]

    Wang J, Li L, Wei Z D (in Chinese) [王俊, 李莉, 魏子栋 2016 物理化学学报 32 321]

    [24]

    Hu J, Ruan X, Jiang Z, Chen Y 2009 Nano Lett. 9 2730

    [25]

    Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B 2010 ACS Nano 4 2300

    [26]

    Rissanou A N, Harmandaris V 2014 Soft Matter 10 2876

    [27]

    Rissanou A N, Harmandaris V 2013 J. Nanopart. Res. 5 1

    [28]

    Lin J Q, Li X K, Yang W L, Sun H G, Xie Z B, Xiu H J, Lei Q Q 2015 Acta Phys. Sin. 64 126202 (in Chinese) [林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉 2015 物理学报 64 126202]

    [29]

    Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T 2011 ACS Nano 6 2008

    [30]

    Sheng Y Z, Hua Y, Li J Y, Miao S 2013 Chem. Res. Chin. U. 29 788

    [31]

    Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H 2014 Compos. Sci. Technol. 97 41

    [32]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [33]

    Zhang C, Hao R, Liao H, Hou Y 2013 Nano Energy 2 88

    [34]

    Fu Y Z, Hu S Q, Lan Y H, Liu Y Q 2010 Acta Chim. Sin. 68 809 (in Chinese) [付一政, 胡双启, 兰艳花, 刘亚青 2010 化学学报 68 809]

    [35]

    Zhou G D, Duan L Y 2008 Basic of Structural Chemistry (4th Ed.) (Beijing: Peking University Press) p324 (in Chinese) [周公度, 段连运 2008 结构化学基础 (第4版) (北京: 北京大学出版社) 第324页]

    [36]

    Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p110 [陈正隆 2007分子模拟的理论与实践(北京: 化学工业出版社) 第110–112页]

    [37]

    Ding M X 2006 Polyimide: Chemistry, Relationship between Structure and Properties and Materials (Beijing: Science Press) pp225, 226 (in Chinese) [丁孟贤 2006 聚酰亚胺––化学、结构与性能的关系及材料(北京: 科学出版社)第225, 226页]

  • [1]

    Hernández M, Bernal M D M, Verdejo R, Ezquerra T A, López-Manchado M A 2012 Compos. Sci. Technol. 73 40

    [2]

    Yang X, Tu Y, Li L, Shang S, Tao X M 2010 ACS Appl. Mater. Inter. 2 1707

    [3]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R,Novoselov K S 2010 Physics 22 2694

    [4]

    Kuilla T, Bhadra S, Yao D, Kim N H, Bose S, Lee J H 2010 Prog. Polym. Sci. 35 1350

    [5]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [6]

    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y 2011 J. Mater. Chem. 21 13290

    [7]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [8]

    Chen D, Zhu H, Liu T 2010 ACS Appl. Mater. Inter. 2 3702

    [9]

    Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T 2012 ACS Appl. Mater. Inter. 4 2699

    [10]

    Awasthi A P, Lagoudas D C, Hammerand D C 2009 Model. Simul. Mater. Sci. Eng. 17 015002

    [11]

    Boukhvalov D W, Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205

    [12]

    Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y 2012 ACS Appl. Mater. Inter. 4 4623

    [13]

    Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L, S, Nam J D, Sinh L H, Seppälä J 2011 Polymer 52 5237

    [14]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [15]

    Yoonessi M, Shi Y, Scheiman D A, Lebron-Colon M, Tigelaar D M, Weiss R A, Meador M A 2012 ACS Nano 6 7644

    [16]

    Park O K, Kim S G, You N H, Ku B C, Hui D, Lee J H 2014 Compos. Part B: Eng. 56 365

    [17]

    Kim H, Kobayashi S, AbdurRahim M A, Zhang M J,Khusainova A, Hillmyer M A, Abdala A A, Macosko C W 2011 Polymer 52 1837

    [18]

    Tripathi S N, Saini P, Gupta D, Choudhary V 2013 J.Mater. Sci. 48 6223

    [19]

    Liang J, Yi H, Long Z, Yan W, Ma Y, Guo T, Chen Y 2009 Adv. Funct. Mater. 19 2297

    [20]

    Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S 2011 Carbon 49 198

    [21]

    Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M 2011 J. Mater. Chem. 21 13569

    [22]

    Park O K, Hwang J Y, Goh M, Lee J H, Ku B C, You N H 2013 Macromolecules 46 3505

    [23]

    Wang J, Li L, Wei Z D (in Chinese) [王俊, 李莉, 魏子栋 2016 物理化学学报 32 321]

    [24]

    Hu J, Ruan X, Jiang Z, Chen Y 2009 Nano Lett. 9 2730

    [25]

    Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B 2010 ACS Nano 4 2300

    [26]

    Rissanou A N, Harmandaris V 2014 Soft Matter 10 2876

    [27]

    Rissanou A N, Harmandaris V 2013 J. Nanopart. Res. 5 1

    [28]

    Lin J Q, Li X K, Yang W L, Sun H G, Xie Z B, Xiu H J, Lei Q Q 2015 Acta Phys. Sin. 64 126202 (in Chinese) [林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉 2015 物理学报 64 126202]

    [29]

    Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T 2011 ACS Nano 6 2008

    [30]

    Sheng Y Z, Hua Y, Li J Y, Miao S 2013 Chem. Res. Chin. U. 29 788

    [31]

    Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H 2014 Compos. Sci. Technol. 97 41

    [32]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [33]

    Zhang C, Hao R, Liao H, Hou Y 2013 Nano Energy 2 88

    [34]

    Fu Y Z, Hu S Q, Lan Y H, Liu Y Q 2010 Acta Chim. Sin. 68 809 (in Chinese) [付一政, 胡双启, 兰艳花, 刘亚青 2010 化学学报 68 809]

    [35]

    Zhou G D, Duan L Y 2008 Basic of Structural Chemistry (4th Ed.) (Beijing: Peking University Press) p324 (in Chinese) [周公度, 段连运 2008 结构化学基础 (第4版) (北京: 北京大学出版社) 第324页]

    [36]

    Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p110 [陈正隆 2007分子模拟的理论与实践(北京: 化学工业出版社) 第110–112页]

    [37]

    Ding M X 2006 Polyimide: Chemistry, Relationship between Structure and Properties and Materials (Beijing: Science Press) pp225, 226 (in Chinese) [丁孟贤 2006 聚酰亚胺––化学、结构与性能的关系及材料(北京: 科学出版社)第225, 226页]

  • [1] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [2] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [3] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律. 物理学报, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [4] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [5] 卜文斌, 范勇, 殷景华, 刘晓旭, 程伟东, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响. 物理学报, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [6] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [7] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [8] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [9] 董若宇, 曹鹏, 曹桂兴, 胡帼杰, 曹炳阳. 直流电场下水中石墨烯定向行为研究. 物理学报, 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [10] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征. 物理学报, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [12] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [13] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [14] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [15] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [16] 王松有, 王昶清, 贾 瑜, 马丙现, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [17] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [18] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [19] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [20] 侯堃, 张占文, 黄勇, 韦建军. 气相沉积法制备聚酰亚胺薄膜不同单体配比的表征及其性能影响. 物理学报, 2016, 65(3): 035203. doi: 10.7498/aps.65.035203
  • 引用本文:
    Citation:
计量
  • 文章访问数:  823
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-20
  • 修回日期:  2017-08-20
  • 刊出日期:  2017-11-20

聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟

  • 1. 哈尔滨理工大学应用科学学院, 哈尔滨 150080;
  • 2. 哈尔滨理工大学, 工程电介质及其应用教育部重点实验室, 哈尔滨 150080;
  • 3. 广西大学材料科学与工程学院, 有色金属及特色材料加工国家重点实验室培养基地, 南宁 530004;
  • 4. 中国科学院长春应用化学研究所高分子复合材料工程实验室, 长春 130022
  • 通信作者: 杨文龙, wlyang@hrbust.edu.cn
    基金项目: 

    国家自然基金(批准号:61372013)和黑龙江省自然科学基金(批准号:E201258)资助的课题.

摘要: 应用分子模拟方法,建立了聚酰亚胺(polyimide,PI),石墨烯及羧基、氨基、羟基功能化石墨烯模型,探究了聚酰亚胺和石墨烯,聚酰亚胺和功能化石墨烯共混后复合材料的力学性能和玻璃化转变温度(Tg).研究结果表明,羧基修饰的石墨烯与PI复合后材料力学性能增加显著,其杨氏模量和剪切模量分别为4.946 GPa和1.816 GPa.不同官能团修饰的石墨烯引入PI后材料的Tg均有不同程度下降;未修饰的石墨烯与PI复合后,其Tg(559.30 K)较纯PI的Tg(663.57 K)降幅最大;而羧基修饰的石墨烯与PI复合后Tg(601.61 K)降幅最小.计算比较了PI/石墨烯复合材料体系密度、溶解度参数、相互作用能、弹性系数和氢键平均密度,研究发现羧基修饰石墨烯/PI复合材料的密度为1.396 g·cm-3,溶解度参数为23.51 J1/2·cm-3/2,其相互作用能与氢键平均密度最大,弹性系数显示羧基修饰石墨烯与PI组成的复合材料内部最均匀.计算结果表明,羧基功能化石墨烯可以大幅度提高PI的力学性能,增强石墨烯与PI之间的相互作用可以减少复合材料Tg的降幅程度.此基体间相互作用的研究方法可以作为预测聚合物基纳米复合材料结构与性能的有效工具,以期为材料的设计与应用提供理论指导.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回