搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种生成质量最优路径纠缠微波信号的压缩参量选择方法

王湘林 吴德伟 李响 朱浩男 陈坤 方冠

一种生成质量最优路径纠缠微波信号的压缩参量选择方法

王湘林, 吴德伟, 李响, 朱浩男, 陈坤, 方冠
PDF
导出引用
导出核心图
  • 介绍了路径纠缠微波及其生成原理,将生成信号以量子力学算符的形式表示,并在光子数态表象下展开,定性地给出了生成信号与压缩参量之间的关系.提出了一种路径纠缠微波信号质量评价方法,即通过信号中纠缠微波光子总数的期望值表征信号的纠缠度,间接实现对信号质量的评价.基于这种信号质量评价方法,提出了一种生成质量最优路径纠缠微波信号的压缩参量选取方法:在近似确定有效纠缠微波光子数的前提下,找出生成不同微波光子数纠缠概率最大时的一组压缩参量值,进而得出各个压缩参量值所对应的一组纠缠微波光子总数的期望值,其中的最大值对应的压缩参量值即为生成质量最优信号所要选择的压缩参量值.通过理论分析,发现路径纠缠微波信号质量由压缩参量决定,且只与压缩幅有关,而与压缩角无关.仿真实验结果表明,在纠缠微波光子数的最大有效值取为“26”时,纠缠微波光子总数期望值的最大值对应的压缩幅值为1.77,即压缩幅取此值时所得到的路径纠缠微波信号质量最佳,仿真结果表明该方法是有效的.本文的研究为路径纠缠微波在实验研究和实际应用中如何生成高质量信号的问题提供了思路.
      通信作者: 吴德伟, wudewei74609@126.com
    • 基金项目: 国家自然科学基金(批准号:61573372)资助的课题.
    [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [2]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [3]

    Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T, Strunk C 2010 Phys. Rev. Lett. 104 026801

    [4]

    Recher P, Sukhorakov E V, Loss D 2001 Phys. Rev. B 63 165314

    [5]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663

    [6]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [7]

    Johansson G 2012 Physics 5 120

    [8]

    Arndt M, Hornberger K, Zeilinger A 2005 Phys. World 18 35

    [9]

    Gisin N, Thew R 2006 Nat. Photon. 1 165

    [10]

    Zhou C H, Qian W P 2015 Radar Sci. Tech. 13 457 (in Chinese)[周城宏, 钱卫平 2015 雷达科学与技术 13 457]

    [11]

    Peng C Z, Pan J W (in Chinese)[彭承志, 潘建伟 2016 中国科学院院刊 31 1096]

    [12]

    Menzel E P, Di Candia R, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [13]

    Di Candia R, Menzel E P, Zhong L, Deppe F, Marx A, Gross R, Solano E 2014 New J. Phys. 16 015001

    [14]

    Menzel E P 2013 Ph. D. Dissertation (Munich:Technic University of Munich)

    [15]

    Eder P 2012 Ph. D. Dissertation (Munich:Technic University of Munich)

    [16]

    Nakamura Y, Yamamoto T 2013 IEEE Photon. J. 5 0701406

    [17]

    Mariantoni M, Menzel E P, Deppe F, Araque Caballero M A, Baust A, Niemczyk T, Hoffmann E, Solano E, Marx A, Gross R 2010 Phys. Rev. Lett. 105 133601

    [18]

    Hoffmann E, Deppe F, Niemczyk T, Wirth T, Menzel E P 2010 Appl. Phys. Lett. 97 222508

    [19]

    Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6 296

    [20]

    Kim M S, Son W, Buzek V, Knight P L 2002 Phys. Rev. A 65 032323

    [21]

    Li X, Wu D W, Wang X, Miao Q, Chen K, Yang C Y 2016 Acta Phys. Sin. 65 114204 (in Chinese)[李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕 2016 物理学报 65 114204]

    [22]

    Vedral V, Plenio M B, Rippin M A, Knight P K 1997 Phy. Rev. Lett. 78 2275

    [23]

    Shimony A 1995 Ann. NY Acad. Sci. 755 675

    [24]

    Gerry G, Knight P 2005 Introductory Quantum Optics (Cambridge:Cambridge University Press) p187

  • [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [2]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [3]

    Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T, Strunk C 2010 Phys. Rev. Lett. 104 026801

    [4]

    Recher P, Sukhorakov E V, Loss D 2001 Phys. Rev. B 63 165314

    [5]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663

    [6]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [7]

    Johansson G 2012 Physics 5 120

    [8]

    Arndt M, Hornberger K, Zeilinger A 2005 Phys. World 18 35

    [9]

    Gisin N, Thew R 2006 Nat. Photon. 1 165

    [10]

    Zhou C H, Qian W P 2015 Radar Sci. Tech. 13 457 (in Chinese)[周城宏, 钱卫平 2015 雷达科学与技术 13 457]

    [11]

    Peng C Z, Pan J W (in Chinese)[彭承志, 潘建伟 2016 中国科学院院刊 31 1096]

    [12]

    Menzel E P, Di Candia R, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [13]

    Di Candia R, Menzel E P, Zhong L, Deppe F, Marx A, Gross R, Solano E 2014 New J. Phys. 16 015001

    [14]

    Menzel E P 2013 Ph. D. Dissertation (Munich:Technic University of Munich)

    [15]

    Eder P 2012 Ph. D. Dissertation (Munich:Technic University of Munich)

    [16]

    Nakamura Y, Yamamoto T 2013 IEEE Photon. J. 5 0701406

    [17]

    Mariantoni M, Menzel E P, Deppe F, Araque Caballero M A, Baust A, Niemczyk T, Hoffmann E, Solano E, Marx A, Gross R 2010 Phys. Rev. Lett. 105 133601

    [18]

    Hoffmann E, Deppe F, Niemczyk T, Wirth T, Menzel E P 2010 Appl. Phys. Lett. 97 222508

    [19]

    Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6 296

    [20]

    Kim M S, Son W, Buzek V, Knight P L 2002 Phys. Rev. A 65 032323

    [21]

    Li X, Wu D W, Wang X, Miao Q, Chen K, Yang C Y 2016 Acta Phys. Sin. 65 114204 (in Chinese)[李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕 2016 物理学报 65 114204]

    [22]

    Vedral V, Plenio M B, Rippin M A, Knight P K 1997 Phy. Rev. Lett. 78 2275

    [23]

    Shimony A 1995 Ann. NY Acad. Sci. 755 675

    [24]

    Gerry G, Knight P 2005 Introductory Quantum Optics (Cambridge:Cambridge University Press) p187

  • [1] 李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕. 一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法. 物理学报, 2016, 65(11): 114204. doi: 10.7498/aps.65.114204
    [2] 朱浩男, 吴德伟, 李响, 王湘林, 苗强, 方冠. 基于纠缠见证的路径纠缠微波检测方法. 物理学报, 2018, 67(4): 040301. doi: 10.7498/aps.67.20172164
    [3] 魏天丽, 吴德伟, 杨春燕, 罗均文, 李响, 朱浩男. 基于光子计数的纠缠微波压缩角锁定. 物理学报, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [4] 李响, 吴德伟, 苗强, 朱浩男, 魏天丽. 纠缠微波信号的特性及表示方法. 物理学报, 2018, 67(24): 240301. doi: 10.7498/aps.67.20181595
    [5] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠. 物理学报, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [6] 赵冬梅, 李志刚, 郭龑强, 李刚, 王军民, 张天才. 弱抽运下光学参量过程中压缩真空场的光子统计性质. 物理学报, 2010, 59(9): 6231-6236. doi: 10.7498/aps.59.6231
    [7] 高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰. 基于微波链路的路径雨强反演方法及实验研究. 物理学报, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [8] 季玲玲, 吴令安. 光学超晶格中级联参量过程制备纠缠光子对. 物理学报, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [9] 宋明玉, 吴耀德. 微波驱动双模四能级单原子中连续变量纠缠的制备. 物理学报, 2013, 62(6): 064207. doi: 10.7498/aps.62.064207
    [10] 李百宏, 王豆豆, 庞华锋, 张涛, 解忧, 高峰, 董瑞芳, 李永放, 张首刚. 用二元相位调制实现啁啾纠缠光子对关联时间的压缩. 物理学报, 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [11] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态. 物理学报, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [12] 谢红云, 金冬月, 何莉剑, 张 蔚, 张万荣, 王 圩, 王 路. 基于DFB激光器的光学微波信号的产生. 物理学报, 2008, 57(7): 4558-4563. doi: 10.7498/aps.57.4558
    [13] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [14] 麻艳娜, 王文睿, 宋开臣, 于晋龙, 马闯, 张华芳. 基于双波长时域合成技术的微波光子波形产生. 物理学报, 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [15] 黄燕霞, 黄熙, 赵朋义, 詹明生. 压缩真空场与原子非线性作用过程中的纠缠与消纠缠. 物理学报, 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
    [16] 刘少斌, 王身云. 基于等离子体缺陷层的一维可调谐微波光子晶体滤波特性. 物理学报, 2009, 58(10): 7062-7066. doi: 10.7498/aps.58.7062
    [17] 许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才. 基于载波抑制单边带调制的微波光子本振倍频上转换方法. 物理学报, 2019, 68(13): 134204. doi: 10.7498/aps.68.20190266
    [18] 王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路. 基于双平行马赫-曾德尔调制器的大动态范围微波光子下变频方法. 物理学报, 2017, 66(9): 098401. doi: 10.7498/aps.66.098401
    [19] 杨国健, 赛·萨楚尔夫, 胡岗. 良腔情况失谐双光子注入信号激光系统的压缩效应. 物理学报, 1992, 41(8): 1261-1268. doi: 10.7498/aps.41.1261
    [20] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠. 物理学报, 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
  • 引用本文:
    Citation:
计量
  • 文章访问数:  292
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-07-15
  • 刊出日期:  2017-12-05

一种生成质量最优路径纠缠微波信号的压缩参量选择方法

  • 1. 空军工程大学信息与导航学院, 西安 710077
  • 通信作者: 吴德伟, wudewei74609@126.com
    基金项目: 

    国家自然科学基金(批准号:61573372)资助的课题.

摘要: 介绍了路径纠缠微波及其生成原理,将生成信号以量子力学算符的形式表示,并在光子数态表象下展开,定性地给出了生成信号与压缩参量之间的关系.提出了一种路径纠缠微波信号质量评价方法,即通过信号中纠缠微波光子总数的期望值表征信号的纠缠度,间接实现对信号质量的评价.基于这种信号质量评价方法,提出了一种生成质量最优路径纠缠微波信号的压缩参量选取方法:在近似确定有效纠缠微波光子数的前提下,找出生成不同微波光子数纠缠概率最大时的一组压缩参量值,进而得出各个压缩参量值所对应的一组纠缠微波光子总数的期望值,其中的最大值对应的压缩参量值即为生成质量最优信号所要选择的压缩参量值.通过理论分析,发现路径纠缠微波信号质量由压缩参量决定,且只与压缩幅有关,而与压缩角无关.仿真实验结果表明,在纠缠微波光子数的最大有效值取为“26”时,纠缠微波光子总数期望值的最大值对应的压缩幅值为1.77,即压缩幅取此值时所得到的路径纠缠微波信号质量最佳,仿真结果表明该方法是有效的.本文的研究为路径纠缠微波在实验研究和实际应用中如何生成高质量信号的问题提供了思路.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回